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To identify new genetic risk factors for Vogt-Koyanagi-Harada 
(VKH) syndrome, we conducted a genome-wide association 
study of 2,208,258 SNPs in 774 cases and 2,009 controls with 
follow-up in a collection of 415 cases and 2,006 controls and a 
further collection of 349 cases and 1,588 controls from a Han 
Chinese population. We identified three loci associated with 
VKH syndrome susceptibility (IL23R-C1orf141, rs117633859, 
Pcombined = 3.42 × 10−21, odds ratio (OR) = 1.82; ADO-
ZNF365-EGR2, rs442309, Pcombined = 2.97 × 10−11, OR = 1.37; 
and HLA-DRB1/DQA1, rs3021304, Pcombined = 1.26 × 10−118, 
OR = 2.97). The five non-HLA genes were all expressed in 
human iris tissue. IL23R was also expressed in the ciliary body, 
and EGR2 was expressed in the ciliary body and choroid. The 
risk G allele of rs117633859 in the promoter region of IL23R 
exhibited low transcriptional activation in a cell-based reporter 
assay and was associated with diminished IL23R mRNA 
expression in human peripheral blood mononuclear cells.

VKH syndrome is a multisystemic autoimmune disorder character-
ized by bilateral granulomatous panuveitis frequently associated with 
systemic involvement1. This syndrome primarily affects individuals 
from certain countries such as China and Japan and is rare in the 
United States and the UK1,2. HLA-DR4 and HLA-DR53 are associ-
ated with VKH syndrome in various ethnic populations3–8. Previous 
genetic studies of VKH syndrome have identified several associated 
genes such as CTLA4, MIF and SPP1 (also called OPN)9–11. To inves-
tigate additional genetic variants for VKH syndrome, we conducted 
the first multistage genome-wide association study (GWAS) with a 

total of 1,538 cases with VKH syndrome and 5,603 controls from a 
Han Chinese population. The characteristics of the cases and con-
trols enrolled in the present study are summarized in Supplementary 
Tables 1 and 2. In the GWAS stage, 900,015 and 906,659 SNPs were 
genotyped in 795 cases and 2,046 controls, respectively (Online 
Methods). To further increase genome coverage, we performed an 
imputation analysis to infer the genotypes of additional common 
SNPs (Online Methods). After standard quality-control filtering for 
subjects and SNPs (Online Methods), we obtained data for 2,208,258 
genotyped or imputed SNPs in 774 cases and 2,009 controls (GWAS 
stage, Chongqing and Sichuan cohort) for the subsequent analysis 
(Supplementary Table 2 and Supplementary Fig. 1). Principal 
component analysis (PCA) showed that the cases and controls in 
this study were of Han Chinese ancestry and were well matched 
(Supplementary Figs. 2 and 3). We performed GWAS analysis 
using logistic regression and adjusted for the top eigenvectors using 
PLINK12. A quantile-quantile plot analysis showed that the genomic 
inflation factor (λ) values with and without MHC-region SNPs were 
1.044 and 1.039, respectively (Fig. 1a and Supplementary Fig. 4a),  
indicating that population stratification had negligible effects on the 
genetic analysis in our study samples. In addition to the previously 
reported MHC class II region (Supplementary Fig. 5), multiple  
SNPs in IL23R-C1orf141 at 1p31.2 showed strong association, with 
P values that reached a genome-wide significance of P < 3.13 × 10−7 
(P < 3.13 × 10−7 was considered as genome-wide significant, with  
a total of 159,799 independent blocks among the controls in the  
study assuming an r2 value of 0.5) (Table 1, Figs. 1b and 2a, 
Supplementary Fig. 4b and Supplementary Tables 3–5).
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To confirm the association obtained during the GWAS stage (Figs. 1b 
and 2), we selected 47 independently associated SNPs for a replication 
study (Online Methods) in 415 cases and 2,006 controls (replication 1, 
Guangdong and Hong Kong cohort) (Supplementary Note). Three loci 
on chromosomes 1, 6 and 10 were successfully replicated: rs3021304 
at 6p21.3 showed the strongest association with VKH syndrome  
(P = 1.84 × 10−38), followed by rs78377598 at 1p31.2 (P = 1.60 × 10−5) 
and rs442309 at 10q21.3 (P = 6.15 × 10−3) (Table 1). To assess the enrich-
ment of VKH syndrome–associated SNPs and genes (2,295 SNPs, which 
had P < 1.0 × 10−4 in the GWAS stage, were enrolled in this analysis), 

we performed pathway-based analysis using GenGen software (see 
URLs)13,14. The result showed that 20 SNPs and genes were enriched in 
the transmembrane receptor activity pathway (the GO0004888 path-
way) (size of 20, nominal P < 0.000001, false discovery rate <0.0001), 
suggesting that cellular surface signal transduction may be involved 
in the development of VKH syndrome. However, the association with 
VKH syndrome of these 20 SNPs and genes enriched in the GO0004888 
pathway was not replicated in the first replication study.

To further confirm the association of the three loci with VKH syn-
drome, we genotyped three SNPs in a second replication collection  
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Figure 1 Genome-wide association results for 774 cases with VKH syndrome and 2,009 controls from the Han Chinese population. (a) Quantile-quantile 
plot of the observed (y axis) and expected (x axis) P values from the genome-wide association results for all SNPs. (b) Manhattan plot of P values on the 
−log10 scale for 2,208,258 SNPs in the GWAS stage (774 cases and 2,009 controls). The red line represents P = 1 × 10−8, and the blue dashed line 
represents P = 1 × 10−6.

table 1 Association results for three loci in the GWAs and replication studies

SNP Chr. Position Genes MA Stage
MAF  

(case/control) P OR (95%CI) Q I2

rs78377598 1p31.2 67612502 IL23R, C1orf141 T GWAS 15.3/8.7 2.31 × 10−9 1.83 (1.50–2.23)

Replication 1 14.9/9.8 1.60 × 10−5 1.62 (1.30–2.01)

Replication 2 15.6/10.7 3.57 × 10−4 1.52 (1.21–1.91)

Combined 15.4/9.7 6.00 × 10−16 1.67 (1.47–1.89) 0.46 0

rs117633859 1p31.2 67627828 IL23R, C1orf141 G GWAS 15.0/8.5 5.38 × 10−9 1.81 (1.49–2.22)

Replication 1 17.3/10.1 6.85 × 10−9 1.89 (1.53–2.53)

Replication 2 16.4/10.0 2.91 × 10−6 1.73 (1.38–2.18)

Combined 16.0/9.5 3.42 × 10−21 1.82 (1.60–2.05) 0.86 0

rs114800139 6p21.3 32428715 HLA-DRA, HLA-DRB5 A GWAS 63.5/34.9 5.17 × 10−51 3.07 (2.66–3.56)

Replication 1 63.1/34.6 1.27 × 10−43 3.17 (2.69–3.73)

Replication 2 57.9/33.7 5.79 × 10−29 2.77 (2.32–3.31)

Combined 62.3/34.5 1.16 × 10−119 3.02 (2.75–3.31) 0.52 0

rs3021304 6p21.3 32575658 HLA-DRB1, HLA-DQA1 G GWAS 62.6/34.4 5.08 × 10−47 2.88 (2.49–3.32)

Replication 1 62.3/36.5 1.84 × 10−38 2.93 (2.49–3.44)

Replication 2 60.7/32.3 3.30 × 10−24 3.18 (2.66–3.81)

Combined 62.2/34.6 1.26 × 10−118 2.97 (2.71–3.26) 0.67 0

rs442309 10q21.3 64490495 ADO, ZNF365, EGR2 T GWAS 30.9/24.6 1.15 × 10−6 1.44 (1.24–1.66)

Replication 1 31.1/26.4 6.15 × 10−3 1.26 (1.07–1.48)

Replication 2 33.0/25.8 2.82 × 10−3 1.43 (1.19–1.72)

Combined 31.5/25.6 2.97 × 10−11 1.37 (1.25–1.51) 0.43 0

rs224058 10q21.3 64498865 ADO, ZNF365, EGR2 A GWAS 30.4/24.4 4.08 × 10−6 1.41 (1.22–1.63)

Replication 1 31.1/26.6 7.96 × 10−3 1.25 (1.06–1.48)

Replication 2 33.5/26.0 4.93 × 10−5 1.47 (1.22–1.77)

Combined 31.4/25.6 5.79 × 10−11 1.37 (1.25–1.51) 0.40 0

Chr., chromosome; position, position on NCBI human reference genome build 37; MA, minor allele; MAF, minor allele frequency; OR: odds ratio for the minor allele; 95% CI, 95% 
confidence intervals; Q, statistic for the meta results; I2, value for the combined results.
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comprising 349 cases and 1,588 controls (replication 2, Beijing  
cohort) and genotyped seven additional SNPs in the same linkage 
disequilibrium (LD) block with the three associated SNPs at 1p31.2 
(four SNPs), 6p21.3 (one SNP) and 10q21.3 (two SNPs) in the GWAS 
and two replication cohorts (GWAS and replications 1 and 2). We were 
able to confirm an association with VKH syndrome for all five SNPs 
in IL23R-C1orf141 at the 1p31.2 locus (3.57 × 10−4 ≤ P ≤ 2.91 × 10−6;  
Table 1 and Supplementary Table 5), leading to highly significant 
observations when we performed meta-analysis on data from the 
GWAS and first and second replication collection (total sample of 
1,538 cases and 5,603 controls, OR = 1.82, Pcombined = 3.42 × 10−21 for 
the lead SNP rs117633859) (Table 1 and Supplementary Table 5).  
Three SNPs in ADO-ZNF365-EGR2 at the 10q21.3 locus were also 
significantly associated with VKH syndrome in the second replication 
(Pcombined = 2.97 × 10−11 and OR = 1.37 for the lead SNP rs442309; 
Table 1). Two SNPs in the HLA region at 6p21.3 also showed a strong 
association with VKH syndrome (Pcombined = 1.26 × 10−118, OR = 2.97 
for SNP rs3021304; and Pcombined = 1.16 × 10−119, OR = 3.02 for SNP 
rs114800139; Table 1). We further performed an interaction analysis for 
the three associated SNPs, including rs117633859 at 1p31.2, rs3021304 
at 6p21.3 and rs442309 at 10q21.3, and did not detect any gene-gene 
interactions between these three loci (Supplementary Table 6).  
As we performed the present GWAS using Affymetrix and Illumina 
platforms, we calculated the logistical P value for the three signifi-
cant SNPs (rs117633859, rs3021304 and rs442309) after adjusting for 
the different platforms. These significantly associated SNPs were not 
confounded by the use of two different platforms (Supplementary 
Table 7). Additionally, we used a genome-wide complex trait analysis 
to assess the variance demonstrated by these three associated SNPs 
(rs117633859, rs3021304 and rs442309) assuming a VKH syndrome 
prevalence of 0.000006 according to Japanese data15, in view of the lack of 
Chinese incidence data for this syndrome. The result showed that the esti-
mated proportion of genetic variance regarding rs117633859, rs3021304 
and rs442309 over the total variance was 0.000812 (P < 0.001).

To focus further on the HLA association, we performed an imputa-
tion analysis for the association of rs3021304 at HLA-DRB1/DQA1 
with VKH syndrome. The results indicated that only some HLA alleles  

were associated with risk of VKH syndrome (the most significant  
HLA allele was HLA-DQB1*301, P = 8.88 × 10−13) (Supplementary 
Table 8). However, the most significant allele, HLA-DQB1*301, 
showed weak LD with rs3021304 (r2 = 0.107), suggesting that 
rs3021304 is an independent risk locus for VKH syndrome.

As mentioned above, our study identified two new non-HLA sus-
ceptibility loci for VKH syndrome: IL23R-C1orf141 at 1p31.2 and 
ADO-ZNF365-EGR2 at 10q21.3. To investigate whether the identified 
risk allele in IL23R-C1orf141 contributed to the functional effects, we 
explored its biological functions. rs117633859, located ~4 kb upstream 
from IL23R, showed the strongest association with VKH syndrome. 
rs117633859 is in the same LD block as rs1884444 in an exon of IL23R 
(D′ = 1.0, r2 = 0.284) but is in a different LD block than rs7528804 in 
C1orf141 (Supplementary Fig. 6). We examined the expression of 
IL23R in human uveal tissues (iris, choroid and ciliary body) using 
RT-PCR (Supplementary Table 9). Although IL23R was expressed  
in both the iris and ciliary body of all four controls (Supplementary 
Fig. 7a,b), this expression was likely from resident macro-
phages and dendritic cells, which are abundant in these tissues16.  
We found expression of C1orf141 only in the iris (Supplementary 
Fig. 8a,e). These findings suggest that the association signal observed 
at 1p31.2 was more likely to be linked to IL23R than to C1orf141. 
Bioinformatics analysis showed that rs117633859 affects transcrip-
tion factor binding (JASPAR; Supplementary Table 10)17, which may 
lead to altered IL23R expression. We therefore focused on the effect of 
genotypes at rs117633859 on IL23R expression in human peripheral 
blood mononuclear cells. We found decreased IL23R expression in 
normal controls with the risk GG genotype of rs117633859 (P = 0.011;  
Supplementary Fig. 7c). Public data (GSE6536)18 also showed 
diminished mRNA expression of IL23R in individuals with the risk  
G allele of rs117633859, despite this result being inconsistent with other 
public data19 (Supplementary Fig. 9). We also performed an in vitro  
luciferase reporter gene assay to test whether this polymorphism 
affected IL23R transcription directly. We observed lower transcription 
activity in HEK-293A cells containing the risk G allele of rs117633859 
(P = 1.10 × 10−13; Supplementary Fig. 7d). Taken together, these 
data suggest that genetic variants of IL23R may be a risk factor for 
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Figure 2 Regional plots of association results for the two newly identified susceptibility loci for VKH syndrome at 1p31.2 and 10q21.3. (a,b) Regional 
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VKH syndrome caused by low expression of this gene. We also evalu-
ated IL23R expression in iris specimens between patients with VKH 
syndrome without active inflammation (obtained during iridectomy 
surgery) and controls. The result showed no significant differences  
in IL23R mRNA expression between the patients and controls  
(P = 0.201; Supplementary Fig. 8f). This finding may be explained  
by the absence of active inflammation in the enrolled patients.

A previous study showed that four SNPs in IL23R are not associated 
with VKH syndrome20. The inconsistent result may be explained by 
the lack of strong LD and the location in a different LD block between 
the four SNPs reported in that study and VKH syndrome–associated 
SNPs in IL23R found in the present study using the 1000 Genomes 
Project CHB data (r2 ≤ 0.04; Supplementary Fig. 10a), suggesting 
that SNPs within the same gene may have different contributions to 
disease. Recently, GWAS and candidate studies have identified mul-
tiple risk genes, such as IL23R, for Behçet’s disease, another common 
uveitis entity in the Chinese population21–27. The reported SNPs in 
IL23R that are associated with Behçet’s disease21,22 are located in a 
different LD block than the SNPs contributing to the risk of VKH syn-
drome (Supplementary Fig. 10). We therefore tested the association 
of VKH syndrome–associated SNPs at 1p31.2 with Behçet’s disease 
in a Chinese Han population. The results did not show an associa-
tion of the examined SNPs with Behçet’s disease (PBonferroni > 0.05; 
Supplementary Table 11). IL23R variants have also been found to 
be associated with various diseases such as psoriasis, Crohn’s disease 
and ankylosing spondylitis28–37 (Supplementary Table 12). However, 
the SNPs in IL23R that are associated with psoriasis, Crohn’s dis-
ease and ankylosing spondylitis are located in a different LD block 
than the VKH syndrome–associated SNPs identified in this study 
(Supplementary Fig. 10b,c). These findings suggest that genetic 
variants in IL23R are a shared common risk factor for multiple auto-
immune diseases and that the contribution of this risk factor to VKH 
syndrome may be caused by the transcriptional regulation of this gene 
rather than a change in protein structure or activity, which may be 
involved in the association of IL23R with Crohn’s disease, psoriasis 
and ankylosing spondylitis.

Our study also identified a new susceptibility locus for VKH syn-
drome at ADO-ZNF365-EGR2 (rs442309). To investigate the rela-
tionship of rs442309 with ADO, ZNF365 and EGR2, we performed 
functional analysis on HAPMAP3_EXPRESSION data (E-MTAB-
264)19. The results did not show any effects of rs442309 on the expres-
sion of the three genes (P > 0.05; Supplementary Fig. 11). These 
results suggest that this SNP or the SNPs strongly linked with it may 
be involved in the development of VKH syndrome through the regula-
tion of mRNA stability or the splicing of these genes. ADO, ZNF365 
and EGR2 were all expressed in the iris (Supplementary Table 9 and 
Supplementary Fig. 8b–d), and we also found EGR2 expression in 
the ciliary body and choroid (Supplementary Fig. 8d). These results 
suggest that these genes, along with their interacting genes that are 
also expressed in ocular tissue, may contribute to the pathogenesis of 
VKH syndrome. Variants at ZNF365 have been shown to be associ-
ated with Crohn’s disease29,34,38,39, atopic dermatitis40,41 and breast 
cancer42. EGR2 has important roles in the regulation of the adaptive 
immune responses and the homeostasis of B and T cells43,44. ADO 
has also been identified as a risk locus for Crohn’s disease34. Because 
similar genetic associations have been observed for VKH syndrome, 
Crohn’s disease, psoriasis and ankylosing spondylitis, we summarized 
the known risk loci for these diseases (Supplementary Table 13). 
Although no non-HLA SNPs (excluding SNPs at 1p31.2 and 10q21.3) 
reached genome-wide significance in the present GWAS, 11 of the 166 
loci and genes showed a suggestive association with VKH syndrome 

(P = 0.046 to 0.013; Supplementary Table 13). However, whether 
genetic overlap for multiple autoimmune diseases is indicative of a 
dysregulated immune or metabolic response or is instead specific to 
a disease or tissue remains unclear. We also reevaluated a variety of 
genetic variants that have been linked to VKH syndrome and pub-
lished in previous reports10,11 using the present GWAS data. Although 
none of these SNPs demonstrated genome-wide significance in this 
GWAS, 8 out of 12 genes described in the earlier reports showed a 
suggestive association with this syndrome (P = 0.044 to 2.28 × 10−4; 
Supplementary Table 14). Further studies using larger samples or 
other ethnic populations will be needed to elucidate the true contribu-
tors to VKH syndrome.

In summary, we identified two new risk loci for VKH syndrome 
at 1p31.2 and 10q21.3 and confirmed the association between HLA 
genes and VKH syndrome.

URLs. EIGENSOFT, http://genetics.med.harvard.edu/reich/Reich_
Lab/Software.html; IMPUTE, https://mathgen.stats.ox.ac.uk/impute/
impute.html; HapMap, http://hapmap.ncbi.nlm.nih.gov/; LocusZoom, 
http://csg.sph.umich.edu/locuszoom/; PLINK 1.07, http://pngu.
mgh.harvard.edu/~purcell/plink/download.shtml; R statistical soft-
ware, http://www.r-project.org/; Gene Expression Omnibus (GEO), 
http://www.ncbi.nlm.nih.gov/geo/; 1000 Genomes Project, http://
www.1000genomes.org/; GenGen, http://www.openbioinformatics.
org/gengen/; JASPAR, http://jaspardev.genereg.net/; HIBAG, http://
www.biostat.washington.edu/~bsweir/HIBAG/; Gene Ontology, 
http://www.geneontology.org/.
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ONLINe MeTHOdS
Recruitment of patients and normal controls. We performed a three-
stage case-control study, including an initial GWAS stage and two replica-
tion stages, with a Han Chinese population (Supplementary Tables 1 and 2 
and Supplementary Fig. 1). The GWAS stage included 795 cases with VKH 
syndrome and 2,046 normal controls. The replication stages included 764 
cases and 3,594 normal controls. The enrolled samples were recruited from 
multiple ophthalmic centers in China. All cases were diagnosed with VKH 
syndrome by senior ophthalmologists based strictly on the revised diagnos-
tic criteria 2001 for VKH syndrome45. If the diagnosis was uncertain, the 
cases were excluded from the study. The study of Behçet’s disease consisted 
of 509 cases with Behçet’s disease recruited from the First Affiliated Hospital 
of Chongqing Medical University (Chongqing, China) and the Zhongshan 
Ophthalmic Center, Sun Yat-sen University (Guangzhou, China). The 
diagnosis of Behçet’s disease was based on the criteria of the International 
Study Group46. A total of 4,012 normal controls used in the Behçet’s dis-
ease study were recruited from the First Affiliated Hospital of Chongqing 
Medical University (Chongqing, China), Sun Yat-sen University (Guangzhou, 
China) and The Sichuan Provincial Key Laboratory for Human Disease Gene 
Study, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s 
Hospital (Chengdu, China) and Department of Ophthalmology and Visual 
Sciences, The Chinese University of Hong Kong (Hong Kong, China). All par-
ticipants provided written informed consent. The present study was approved 
by the Ethics Committee of the First Affiliated Hospital of Chongqing Medical 
University (permit number: 2009-201008) and adhered to the tenets of the 
Declaration of Helsinki.

DNA extraction. Ethylenediaminetetraacetic acid disodium salt (EDTA-2Na)-
anticoagulated venous blood samples were collected from all participants. 
Genomic DNA was extracted from peripheral blood using a QIAGEN QIAamp 
DNA Mini Blood Kit (Hilden, Germany) according to the manufacturer’s  
recommendations.

GWAS genotyping, quality control and imputation analysis. Genome-wide 
genotyping was performed using the HumanOmniZhongHua-8 BeadChip 
(Illumina) or Affymetrix GeneChip Genome Wide SNP 6.0 arrays. Before 
subsequent GWAS analysis, we conducted quality-control filtering of the 
GWAS data. The SNPs were excluded from this analysis if they had MAF < 5%,  
deviated from Hardy-Weinberg equilibrium (P < 1.0 × 10−3) or had a geno-
typing call rate <95%. As the reference panel, we imputed ungenotyped SNPs 
using the IMPUTE program (v2.0; see URLs) according to the CHB and JPT 
data from the 1000 Genomes Project integrated phase 1 release (see URLs)47. 
Imputed SNPs were excluded if they had (i) call rate <95%, (ii) MAF < 5% or 
(iii) Hardy-Weinberg equilibrium P value in controls <1.0 × 10−3. A total of 
2,208,258 SNPs passed all the quality-control criteria and were used in the 
subsequent analysis. For sample filtering, individuals with generated geno-
types with a call rate of less than 95% were excluded (15 samples). We also 
conducted identity-by-state probabilities for all subjects to search for dupli-
cates and closely related individuals among the samples. After sample filtering, 
21 cases and 37 controls were excluded from the study. A total of 774 cases 
and 2,009 controls were enrolled in the subsequent analysis. The imputation 
analysis of the HLA region was also performed on the basis of known SNP 
genotypes using the R package HIBAG (see URLs)48. The reference panels for 
imputation were based on the resources provided by HIBAG (the four-digit 
resolution of multiple GlaxoSmithKline clinical trials of Asian ancestry (east 
and south Asia) (referred to as ‘HLARES’) and HapMap Phase 2).

SNP selection for replication study. The criteria used to select SNPs for  
validation from the discovery stage were P < 1.0 × 10−4 in the GWAS  
stage, MAF > 5% and r2 < 0.5 (removing the SNPs in high LD using clump-
ing analysis). Forty-seven SNPs remained after filtering. Genotyping for the 
replication 1 study was performed using the Sequenom MassARRAY system 
(Sequenom Inc.) according to the manufacturer’s instructions. The associated 
SNPs in the replication 1 stage were genotyped in another Chinese cohort 
using an ABI SNPshot method according to the manufacturer’s manual. Seven 
additional SNPs in three loci including 1p31.2 (IL23R-C1orf141), 6p21.3 
(HLA-DRA/DRB1) and 10q21.3 (ADO-ZNF365-EGR2) were also included 
and genotyped using the ABI SNPshot method to further validate and aug-
ment the credibility of the associated loci. DNA samples were genotyped using 
TaqMan SNP genotyping assays for rs117633859 (assay ID: AHVJKBP; Applied 
Biosystems) (Supplementary Fig. 12). We also evaluated the accuracy of nine 
SNPs at 1p31.2, 6p21.3 and 10q21.3 imputed with VKH syndrome by genotyping 
these SNPs using a randomly selected sample of cases and controls tested dur-
ing the GWAS stage (179 cases and 929 controls) with the iPLEX MassARRAY 
platform or AB TaqMan probe. The concordant call (%) between the imputed 
and genotyped data was more than 98.2% (Supplementary Table 15).

Genome-wide pathway association analysis. GenGen was used to perform 
pathway-based analysis for the GWAS data (see URLs). The associated 2,295 
SNPs (the SNPs with P < 1.0 × 10−4 in the GWAS stage), which mapped 
to a gene or to less than 500 kb from the closest gene, were considered in 
this analysis. A Kolmogorov-Smirnov–like statistic was then used to assess  
the enrichment of the genes within pathways as described13. The candidate 
pathway was compiled from the Gene Ontology database (see URLs).

Statistical analyses. The association of each SNP with the risk of VKH syn-
drome in the GWAS, replication and meta-analysis stages was carried out 
with an additive model in logistic regression using PLINK v1.07 (see URLs)12. 
ORs and 95% CIs were adjusted for the top five eigenvectors in the logistic 
regression analysis. Ancestry and population stratification were assessed using 
PCA implemented in the EIGENSOFT package (see URLs). The first PCA was 
used to evaluate the population structure of the samples genotyped during the 
GWAS stage and the data from four populations (CHB, JPT, Utah residents 
of northern and western European ancestry (CEU) and Yoruba from Ibadan, 
Nigeria (YRI)) from the HapMap2 project (see URLs) (Supplementary Fig. 2).  
The second PCA was carried out for cases and controls genotyped in the  
GWAS stage (Supplementary Fig. 3). Heterogeneity was examined using 
Cochran’s Q and I2 statistics. A fixed-effects (Mantel-Haenszel) model was 
applied for the meta-analysis if Phet for Q was >0.05; a random-effects model 
was adopted if Phet for Q was ≤0.05. Regional plots were generated using 
LocusZoom31 (see URLs). R was used to create quantile-quantile plots to 
evaluate the overall significance of the GWAS results (see URLs) (Fig. 1 and 
Supplementary Fig. 4a,b). The difference in luciferase activity was assessed 
with an independent-samples t-test. P < 0.05 was considered significant,  
and all statistical tests were two sided.

45. Read, R.W. et al. Revised diagnostic criteria for Vogt-Koyanagi-Harada disease: 
report of an international committee on nomenclature. Am. J. Ophthalmol. 131, 
647–652 (2001).

46. International Study Group for Behçet’s Disease. Criteria for diagnosis of Behcet’s 
disease. Lancet 335, 1078–1080 (1990).

47. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of 
genomes. G3 (Bethesda) 1, 457–470 (2011).

48. Zheng, X. et al. HIBAG—HLA genotype imputation with attribute bagging. 
Pharmacogenomics J. 14, 192–200 (2014).
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