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Despite the widespread use of metabolomics and proteomics to explore the molecular landscape of depression, there is a lack of
consensus regarding dysregulated molecules with replicable evidence. Thus, this study aimed to identify robust metabolomic and
proteomic features in depression by integrating evidence from large-scale studies. In this study, a knowledge base-mining
approach was adopted to compile a list of dysregulated molecules derived from metabolomic and proteomic studies. A vote-
counting approach was performed to identify consistently altered molecules in the blood and urine samples of patients with
depression. A total of 2398 molecular entries were selected, comprising 857 unique metabolites and 468 unique proteins from 143
metabolomic and 23 proteomic studies in depression. The results of vote-counting analyses revealed that 11 metabolites in blood
and 5 metabolites in urine exhibited consistent disturbances across studies. Circulating levels of glutamic acid and
phosphatidylcholine (32:0) were elevated in depressive patients, whereas the levels of tryptophan, kynurenic acid, kynurenine,
acetylcarnitine, serotonin, creatinine, inosine, phenylalanine, and valine were lower. Urinary levels of isobutyric acid, alanine, and
nicotinic acid were higher, whereas the levels of N-methylnicotinamide and tyrosine were lower. Moreover, analysis of the
proteomic dataset identified only one circulating protein, ceruloplasmin, that was consistently dysregulated. Convergence
comparison prioritized tryptophan as the top-ranked circulating metabolite, followed by kynurenic acid, acetylcarnitine, creatinine,
serotonin, and valine. Collectively, robust evidence of metabolomic changes was observed in patients with depression, pointing to
a role as potential biomarkers. Further investigation of consensus proteomic features for depression is necessitated.
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INTRODUCTION
Depression, a growing global health concern, is characterized by
persistent feelings of sadness, lack of enjoyment, and loss of
interest [1]. Epidemiological surveys have estimated that the
global prevalence of depression is as high as 3 to 10%, making it a
leading cause of disability [2–4]. Its pathogenesis involves a
multifaceted interaction of biological, environmental, and psycho-
logical factors, yet a complete understanding of the mechanisms
by which these factors contribute to depression remains elusive
[5]. At present, while expanding our systematic knowledge of
molecular alterations associated with depression is challenging, it
holds promise for the identification of potential biomarkers and
therapeutic targets [6–8].
Metabolites and proteins are the main biomolecules in

peripheral fluid samples, thus detecting their alterations offers
promising avenues for basic and translational research in
psychiatric diseases. Metabolomics and proteomics have emerged
as powerful tools for delineating the molecular landscape of
diseases because they are more relevant to disease compared to
transcriptomics and genomics [9, 10]. With rapid advancements in
mass spectrometry platforms, these approaches have been widely

used to identify the molecular profiles of depression, yielding a
substantial quantity of data. For example, our previous research
compared the metabolomic and proteomic profiles of patients
with depression and control subjects [11–13]. Further observations
from other studies also suggested alterations in the proteome and
metabolome of depressive patients [14–16]. Overall, these studies
offer novel perspectives in the identification of potential
biomarkers, as well as in elucidating the biological mechanisms
underlying depression.
There is an increasing interest in combining evidence from an

abundance of metabolomics and proteomics studies. Currently,
several solutions have been proposed in the context of data
integration. Combining patient level data is the ideal way to
compare molecular profiles across omics studies. A previous study
investigated metabolomic profile in the plasma of depressive
patients by aggregating patient level data from 9 population-
based studies [17]. However, the lack of raw datasets from the
same profiling approach hampers the further application of this
method. Currently, combining mean concentrations is the most
popular method for the joint analysis of molecular studies. Our
prior meta-analysis encompassed 46 metabolomics studies and
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identified 23 differential metabolites in the blood of patients with
depression [18]. Strengths of our study include a large number of
eligible studies and integrating data from different metabolomic
platforms. Despite these promising results, discrepancies in
methodological designs and technological platforms have led to
inconsistent results in previous metabolomic and proteomic
studies [19]. It is worth noting that there is a lack of consensus
concerning dysregulated molecules with replicable evidence
across these large-scale studies, raising doubt on their clinical
utility in depression [20]. Indeed, several peripheral biomarker
candidates that exhibited a consistent trend of dysregulation
across studies, including gamma-aminobutyric acid and kynur-
enine [21, 22], have been validated in our previous diagnostic
research [23], hinting at future applications in this field. The vote-
counting procedure is an alternative option to identify conserved
and consistent candidate biomarkers for integrating such large-
scale omic datasets. A key strength of this method is that it is
generally convenient for systematic “big data” analyses because
most omics studies provided lists of significantly dysregulated
molecules [24]. Therefore, it has been utilized in our previous
studies that explored metabolomic alterations in animal models of
depression [25, 26].
The aim of the present study was to identify robust molecular

features for depression from metabolomic and proteomic studies.
Therefore, a knowledge base-driven approach was applied to
compile a large list of candidate metabolites and proteins
associated with depression. This was followed by vote-counting
analyses to identify molecules consistently upregulated or down-
regulated in the blood and urine of patients with depression.
Finally, we compared the altered circulating metabolites identified
in this study with those from our previous clinical and preclinical
studies, to prioritize candidate biomarkers. We anticipated that
this systematic investigation would provide a novel perspective on
the metabolomic and proteomic profiles associated with
depression.

MATERIALS AND METHODS
Data source
The data for this investigation were sourced from the ProMENDA database
(https://menda.cqmu.edu.cn). Details of the database design and data
curation have been described in our prior publications [27, 28]. Briefly,
ProMENDA is a comprehensive resource developed to collect and present
available information on metabolomics and proteomics in depressive
patients and animal models. A more detailed description of the ProMENDA
database is given in the Supplementary Methods. To date, 22,519
differential metabolite entries and 20,847 differential protein entries have
been meticulously curated from 1370 studies that investigated molecular
changes in humans, rats, mice, and non-human primates.

Data selection
In the current study, several criteria were applied in the selection of
candidate metabolite and protein sets. This study focused on studies
that explored metabolomic and proteomic alterations between depres-
sive patients and controls, excluding animal studies or those focusing on
treatment effects. Studies that recruited patients with a diagnosis of
depressive disorders according to standardized diagnostic criteria or
clinician assessment were included, those that recruited patients with
depressive symptoms based on depression rating scales were excluded.
In addition, studies wherein all patients presented with a specific disease
(stroke, diabetes, eating disorder, etc.) were excluded. Data from
peripheral blood (plasma or serum) or urine samples, which are
commonly used in clinical metabolomics and proteomics analyses, were
selected for analysis, whereas other tissues were excluded due to limited
molecular data. Lastly, molecular data presented by the ratios of two
molecules were excluded.

Data analytic strategy
In the current study, molecular changes in the blood and urine samples of
patients with depression were explored. To examine potential biological

functions of all identified metabolites and proteins, pathway analyses were
conducted using MetaboAnalyst 6.0, with pathways having false discovery
rates < 0.05 considered as significantly enriched [29]. Then vote-counting
test was performed based on these identified molecules. It tests whether
the levels of differential molecules are consistently increased or decreased
across independent studies, with the assumption that a robust molecule
would be reproducibly identified as dysregulated in independent
validation studies [30, 31]. In the current study, metabolomic changes in
the blood and urine samples of patients with depression were
characterized using the vote-counting procedure. Proteomic alterations
in blood and urine samples were then analyzed. As antidepressants could
modulate metabolomic and proteomic alterations, secondary analyses
were performed based on antidepressant usage (antidepressant-free or
not). Given that these molecules were presented in different formats,
metabolites were mapped to compound names, whilst proteins were
mapped to gene symbols in the ensuing analyses.

Convergence comparison of metabolomic changes in blood
A comprehensive comparison was conducted to systematically synthesize
existing evidence on altered metabolite levels in blood. To examine the
common metabolites shared by different analytical approaches, the
current data were compared with our previous meta-analysis that explored
blood-based metabolomic changes in patients with depression by
combining mean metabolite concentrations [18]. Next, to integrate
cross-species evidence, the common metabolites shared by human and
rodent models were examined. The current data were compared with our
previous vote-counting studies that specifically investigated metabolomic
alterations induced by depression phenotypes and antidepressants in
animal models [25, 26].

Statistical analysis
In this investigation, vote-counting analyses were conducted according to
the following steps. Based on the selected metabolomic and proteomic
datasets, lists of dysregulated metabolites and proteins were compiled.
The frequency of dysregulation for each molecule was recorded in these
analyses, and candidate molecules with a minimal frequency of four were
introduced into the vote-counting procedures [25]. For each candidate
molecule in each study, a value of 1 was assigned to upregulation, while a
value of −1 was assigned to downregulation. The vote-counting statistic
(VCS) for each candidate molecule was calculated by summing total scores,
providing an overall trend of dysregulation. The null hypothesis of the
vote-counting procedure assumes that the frequency of dysregulation is
binomially distributed, signifying that the probabilities of significant
upregulation and downregulation for each molecule are both 50% [24].
A binomial probability test was then performed in R software (version
4.3.0) with the function binom.test. Statistical significance was set at
P < 0.05. All P values referred to one-tailed tests.

RESULTS
Data sets
The flowchart for the current study is depicted in Fig. 1A. Briefly,
2398 molecular entries were selected in blood and urine samples
from the ProMENDA database. The metabolomic dataset com-
prised 1495 metabolite entries derived from 143 studies that
compared metabolite levels between depressive patients and
controls. The reasons for study exclusion are summarized in
Table S1. Comprehensive information on the included metabo-
lomic studies, such as study design, depression criteria, sample
size, and citation, is listed in Supplemental Dataset 1. Among these
metabolomics studies, blood and urine samples were employed in
130 and 18 studies, respectively. Information on the metabolite
entries included in the data analysis, including molecular IDs,
comparison groups, tissues, depression category, platform, and
dysregulated direction is detained in Supplemental Dataset 2.
The proteomic dataset consisted of 903 protein entries derived

from 23 studies. The reasons for data exclusion are outlined in
Table S1. Detailed information on the proteomic studies and
protein entries can be found in Supplemental Datasets 3 and 4,
respectively. Blood and urine samples were used in 22 studies and
1 study, respectively.

J. Pu et al.

2

Molecular Psychiatry

https://menda.cqmu.edu.cn


In the metabolomic dataset, 857 unique metabolites were
reported in at least one study, including 578 in one study, 159 in
two studies, and 53 in three studies, respectively (Fig. 1B). Only 67
(7.8%) metabolites were reported in at least four studies.
Regarding the proteomic dataset, 468 unique proteins were
curated, including 349 in one study, 68 in two studies, and 33 in
three studies, respectively. Merely 18 (3.8%) proteins were
reported in at least four studies. These results collectively
suggested that a small proportion of differential metabolites or
proteins were likely to be well replicated across these omics
studies.
Pathway analysis was performed to identify significantly altered

pathways based on these identified metabolites and proteins. The
results showed that 53 pathways were significantly enriched in the
blood of patients with depression, half of which (28 pathways)
were involved in the metabolic process, especially for amino acid
metabolism (10 pathways) and carbohydrate metabolism (7

pathways; Fig. 1C and Table S2). In urine, 37 pathways were
significantly enriched, three-fourths (27 pathways) were involved
in the metabolic process, especially for carbohydrate metabolism
(9 pathways) and amino acid metabolism (7 pathways; Fig. 1D and
Table S3).

Metabolites altered in blood
Metabolites that were consistently increased or decreased in the
blood of patients with depression were investigated. Data
filtering yielded a total of 1302 differential metabolite entries,
corresponding to 814 unique metabolites. Forty-eight of these
metabolites that were reported as dysregulated in at least four
studies were subjected to vote-counting analyses. The results
exposed that the levels of two metabolites, namely glutamic
acid (VCS= 7, P= 0.020) and phosphatidylcholine (32:0) (VCS=
5, P= 0.031), were consistently increased. Conversely, the levels
of nine metabolites, namely tryptophan (VCS=−18, P < 0.001),
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Fig. 1 Study flowchart and data statistics. A Numbers of molecular entries collected from metabolomic and proteomic datasets. B Numbers
of unique metabolites and proteins and their reported frequencies in metabolomic and proteomic datasets.
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kynurenic acid (VCS=−14, P < 0.001), kynurenine (VCS=−10,
P= 0.003), acetylcarnitine (VCS=−8, P= 0.004), serotonin
(VCS=−7, P= 0.008), valine (VCS=−6, P= 0.035), creatinine
(VCS=−5, P= 0.031), inosine (VCS=−5, P= 0.031), and phe-
nylalanine (VCS=−5, P= 0.031), were decreased (Fig. 2 and
Table S4).
Further analyses were performed based on antidepressant

usage. Among thirteen metabolites that were voted in
antidepressant-free patients, only tryptophan (VCS=−6,
P= 0.016) was consistently downregulated (Table S5). For
antidepressant-treated patients, the vote counting procedure
revealed that three of eight candidate metabolites were down-
regulated, including kynurenic acid (VCS=−12, P < 0.001), tryp-
tophan (VCS=−11, P < 0.001), and serotonin (VCS=−5,
P= 0.031; Table S6).

Metabolites altered in urine
Concerning metabolomic alterations in urine, 87 unique metabo-
lites were identified from 193 differential metabolite entries.
Among them, fifteen metabolites, each with a minimal count of
four, were subjected to vote-counting analyses. The results
showed that the levels of isobutyric acid (VCS= 6, P= 0.016),
alanine (VCS= 6, P= 0.016), and nicotinic acid (VCS= 5, P= 0.031)
were increased. Conversely, the levels of N-methylnicotinamide
(VCS=−6, P= 0.016) and tyrosine (VCS=−5, P= 0.031) were
decreased (Fig. 3 and Table S7).
As most of urinary studies recruited antidepressant-free

patients, secondary analyses were only performed in this
subpopulation. The results of antidepressant-free patients were
similar with those of all populations, except that tyrosine did not
show consistent changes (Table S8).
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Fig. 2 Vote-counting results for metabolomic changes in the blood of patients with depression. The vote-counting statistics (x-axis) for
each metabolite (y-axis) are presented. Red and green bars represent upregulated and downregulated metabolites, respectively. *, one-tailed
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Proteins altered in blood
In order to further explore proteomic changes in patients with
depression, 876 and 27 differential protein entries from blood and
urine samples were selected, respectively. Among the 453
candidate proteins in blood, vote-counting analyses were
conducted for 18 candidate proteins. Our results indicated that
only one protein, ceruloplasmin (CP), was consistently dysregu-
lated, with decreased expression levels in the proteomic studies
(VCS=−5, P= 0.031; Fig. 4 and Table S9). Further analyses of
antidepressant-free patients revealed similar results (Table S10).
Due to the limited amount of data, it was not feasible to conduct
vote-counting analyses for proteomic changes in urine samples.

Convergence comparison of metabolomic changes in the
blood of depressive patients
The list of perturbed metabolites identified in the current
investigation was compared with two lists of dysregulated
metabolites from our previously published human and animal
model studies (Fig. 5A). Results of the convergence comparison
showed that four downregulated metabolites, comprising trypto-
phan, kynurenic acid, acetylcarnitine, and creatinine, overlapped
between the human vote-counting and the combined mean
results. Three dysregulated metabolites identified in the current
study, comprising tryptophan, serotonin, and valine, were also
consistently downregulated in animal model-based blood sam-
ples, with evidence indicating that antidepressants could reverse
these alterations. Based on these multiple lines of evidence, a
panel of common signatures was constructed for the metabo-
lomic profile in the blood of depressive patients (Fig. 5B). Among
consistently dysregulated metabolites identified in the current
study, tryptophan was the only metabolite that exhibited robust
convergent evidence in both human and animal models.
Kynurenic acid, acetylcarnitine, and creatinine were validated by
an alternative statistical approach, while serotonin and valine were
validated by cross-species comparison.

DISCUSSION
To the best of our knowledge, this study has been one of the first
attempts to thoroughly examine universally disturbed metabo-
lomic and proteomic profiles in patients with depression using a
knowledge base-mining approach. A systematic analysis of 143
metabolomic studies identified 11 metabolites in blood and 5
metabolites in urine that exhibited consistent disturbances in
depressive patients. Our findings signaled that the levels of
glutamic acid and phosphatidylcholine (32:0) were consistently
elevated in the blood of patients with depression, while those of
tryptophan, kynurenic acid, kynurenine, acetylcarnitine, serotonin,
creatinine, inosine, phenylalanine, and valine were lower. In urine
samples, the concentrations of isobutyric acid, alanine, and
nicotinic acid were increased, whereas those of
N-methylnicotinamide and tyrosine were decreased. A thorough
examination of 23 proteomic studies unveiled that only one
protein, ceruloplasmin, was consistently altered in the blood of
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P < 0.05.
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patients with depression. Besides, a convergence comparison was
also performed to prioritize circulating metabolites. The top-
ranked metabolite was tryptophan, followed by kynurenic acid,
acetylcarnitine, creatinine, serotonin, and valine. Altogether, these
findings enhance our understanding of the panoramic metabo-
lomic and proteomic alterations in depression.
Herein, a decrease in the circulating levels of tryptophan

metabolites, including tryptophan, serotonin, kynurenic acid, and
kynurenine, was noted in patients with depression. Tryptophan, an
essential amino acid exclusively obtained from dietary sources, is
chiefly metabolized through three pathways in the human body,
namely the serotonin, kynurenine, and indole pathways [32]. Our
findings highlighted dysregulated metabolites in both the
tryptophan-serotonin and tryptophan-kynurenine pathways. Con-
sistent with the serotonin theory of depression, a decrease in
peripheral serotonin levels was observed herein. While the role of
serotonin in depression has long been controversial, recent
attention has shifted towards the tryptophan-kynurenine pathway
[33, 34]. In mammals, over 95% of tryptophan is degraded via the
kynurenine pathway, wherein tryptophan is converted to kynur-
enine, which is in turn further metabolized to kynurenic acid and
quinolinic acid [35]. The decreased level of kynurenine metabolites
observed in our study supports the role of the tryptophan-
kynurenine pathway in depressive patients, in line with the finding
of a large-scale meta-analysis examining kynurenine metabolites
in major psychiatric diseases [36]. The decreased levels of
kynurenic acid indicated attenuated neuroprotective effects, as
kynurenic acid is known as a neuroprotective agent that acts on
multiple receptors [37]. These findings highlight the importance of
tryptophan metabolism in the pathophysiology of depression.
Furthermore, we also found other evidence supporting the

disturbance of amino acid metabolism in depression. In this study,
the concentrations of three essential amino acids, including valine,
phenylalanine, and tryptophan, were significantly decreased,
implying a deficiency in dietary intake of amino acids in
depressive patients. However, the causal link between altered
levels of essential amino acid levels and depression remains to be
elucidated, as tryptophan and phenylalanine depletion studies

yielded conflicting results regarding the induction of depressive
symptoms [38]. Additionally, an increase in the level of glutamic
acid was detected in depressive patients. In agreement with our
findings, another large-scale meta-analysis reported elevated
levels of glutamic acid in postmenopausal women with depression
[39]. Likewise, previous studies also identified a significant positive
correlation between the level of glutamic acid and the severity of
depression, which may be linked to glutamate excitotoxicity
[40, 41].
In this study, alterations in the levels of several circulating

metabolites, including creatinine, acetylcarnitine, and inosine,
were identified. A decrease in the level of creatinine was noted.
The negative correlation between creatinine levels and depression
is consistent with findings from biochemical studies [42, 43],
although other studies have reported contrasting results [44].
Creatinine is synthesized from creatine in muscles. Its reduction
may be explained by low muscle mass or insufficient dietary
protein intake in individuals with depression [45]. Our study also
uncovered a decrease in acetylcarnitine levels, a metabolite
involved in energy metabolism via fatty acid oxidation, in
depressive individuals, consistent with the results of our previous
meta-analysis [18]. Clinical research also pointed out that
acetylcarnitine supplementation could alleviate depression [46].
This evidence indicates that deficits in acetylcarnitine play a role in
depression and may serve as a potential antidepressant agent. The
present study identified decreased inosine levels in depressive
patients. Inosine, a derivative of adenosine, fulfils complex
biological functions such as mediating translational modification
and energy expenditure [47, 48]. Our research, along with prior
studies, demonstrated that inosine supplementation could alle-
viate depressive behaviors in animal models [49–51].
Notably, alterations in amino acid metabolism and nicotinic acid

metabolism were noted in the urine of patients with depression,
with increased levels of alanine, nicotinic acid, and isobutyric acid
and decreased levels of N-methylnicotinamide and tyrosine.
Alanine and tyrosine are non-essential amino acids whose levels
are altered in depressive individuals. Previous studies have
reported a positive correlation between alanine concentrations
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and depressive symptoms, supporting our finding [40]. As tyrosine
is a precursor for catecholamine neurotransmitters, its dysregula-
tion in urine may suggest a deficiency in these neurotransmitters
in depressive patients [52]. Our study also identified an increase in
the level of urinary nicotinic acid and a concomitant decrease in
that of N-methylnicotinamide, both of which participate in
nicotinic acid metabolism. A recent large cohort study described
that high dietary consumption of nicotinic acid was associated
with an increased risk of depression [53]. However, a similar study
based on the same cohort reported a U-shaped association
between nicotinic acid intake and depression [54]. Animal studies
also evinced that N-methylnicotinamide and nicotinamide, two
metabolic products of nicotinic acid, could exert anti-depressive
effects [55, 56]. Taken together, we hypothesized that an
impairment of nicotinic acid metabolism in depression, resulting
in the accumulation of nicotinic acid and a decline in
N-methylnicotinamide levels. However, additional validation
research is still required to confirm this hypothesis. Additionally,
the levels of isobutyric acid, a short-chain fatty acid, were
increased in depressive patients, consistent with animal studies
reporting increased fecal isobutyric acid levels. This observation
suggests the potential role of the microbiota-gut-brain axis in
depression [57].
Our proteomic analysis determined that only one protein,

ceruloplasmin, exhibited consistent alterations in the blood of
patients with depression. Contrary to previous studies suggesting
an upregulation in the expression of ceruloplasmin in patients
with depression [58], its expression was found to be down-
regulated in this study. This discrepancy underscores the need for
further research with larger sample sizes to provide valuable
insights into the role of ceruloplasmin in depressive individuals.
An important finding in this study is that most of altered

molecules identified in previous metabolomics and proteomics
analyses were not reproducible on a wide scale across different
cohorts. This highlights the long-standing reproducibility chal-
lenge faced by metabolomics and proteomics research [59]. It is
globally recognized that both methodological and biological
variations can compromise the reproducibility of omics research
[60–62]. Therefore, efforts to promote methodological standards,
optimize data availability, and improve omics techniques are
warranted to enhance the replication of omics results [63].
Additionally, this inconsistency may be ascribed to the phenotypic
heterogeneity of depressive patients, as patients exhibit a broad
spectrum of psychiatric symptoms. Earlier studies documented
clinical factors, including gender, age, and disease severity,
significantly impact the molecular profiles of depressive patients,
which may contribute to its pathophysiological heterogeneity
[64–66]. These findings highlight the need for further independent
validation of discovered molecules in larger cohorts with diverse
populations, which may yield more well-replicated results.
Nevertheless, several limitations should be acknowledged in the

present study. To begin, considering the methodological weak-
nesses of the vote-counting analysis, we were unable to identify
dysregulated molecules beyond those included in the knowledge
base. More robust findings could potentially be obtained by
combining raw omics datasets, although this remains a challen-
ging task at the current stage. Despite its exploratory nature, the
vote-counting method offers valuable insight into molecular
profiles of depression, given that it remains the most feasible
approach to summarizing such large-scale data. Secondly,
potential confounding factors such as age and gender were not
adjusted for in this study. Future large-scale studies that collect
both demographic and molecular data from individual partici-
pants could provide more precise insights into the correlations
between complex clinical and molecular profiles in depression.
Fourthly, limited data precluded further analyses that explored
molecular changes associated with treatment response. Further
work is needed to understand the processes that could influence

the efficacy of interventions in depression. Lastly, our study was
limited to studies using metabolomic and proteomic platforms.
Further research employing a broader range of analytic platforms,
such as immunoassay kits and Western Blot, could offer a more
comprehensive view of the molecular profile in depression.
In summary, this study established a comprehensive framework

for detecting dysregulated molecules with replicable evidence
across large-scale metabolomic and proteomic studies in depres-
sion. Based on the 2398 molecular entries, this study characterized
molecular changes associated with depression. The results of vote-
counting analyses suggested robust evidence of disturbances in
amino acid metabolism, especially for tryptophan metabolites,
pointing to a role as potential biomarkers. Future studies are
needed to discover proteomic features of depression.
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