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High throughput proteomics identifies
a high-accuracy 11 plasma protein biomarker
signature for ovarian cancer
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Ovarian cancer is usually detected at a late stage and the overall 5-year survival is only

30–40%. Additional means for early detection and improved diagnosis are acutely needed.

To search for novel biomarkers, we compared circulating plasma levels of 593 proteins in

three cohorts of patients with ovarian cancer and benign tumors, using the proximity

extension assay (PEA). A combinatorial strategy was developed for identification of different

multivariate biomarker signatures. A final model consisting of 11 biomarkers plus age was

developed into a multiplex PEA test reporting in absolute concentrations. The final model was

evaluated in a fourth independent cohort and has an AUC= 0.94, PPV= 0.92, sensitivity=
0.85 and specificity= 0.93 for detection of ovarian cancer stages I–IV. The novel plasma

protein signature could be used to improve the diagnosis of women with adnexal ovarian

mass or in screening to identify women that should be referred to specialized examination.
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Ovarian cancer is currently the 7th most common cancer
across the world with estimated incidences from 4.1 to
11.4 cases per 100,000 women1. Since ovarian cancer is

commonly caught late, the overall 5-year survival rate is only
30–40%. MUCIN-16 (also known as Cancer antigen 125, CA-
125) was introduced as a biomarker for ovarian cancer in 19832

and is currently the most important single biomarker for epi-
thelial ovarian cancer managment3. MUCIN-16 alone, however,
has low sensitivity for early-stage cancer (50–62%) at a specificity
of 94–98.5%3. The difficulties in establishing highly accurate early
diagnoses with non-invasive methods, combined with the low
survival rate, justifies that women with a transvaginal ultrasound
(TVU) indication of adnexal ovarian mass are commonly diag-
nosed by surgical sampling. However, the degree of surgical over-
diagnosis is high. Among women that were diagnosed by surgical
sampling, only 21–30% have OC stage I–IV, while 58% have been
reported to have benign tumors and the remaining 15% border-
line tumors4–6. According to the Swedish GynOpRegistry statis-
tics for 2017, 13% of the women with adnexal ovarian mass that
underwent surgery developed complications related to the pro-
cedure7. A non-invasive diagnostic test with higher sensitivity and
retained specificity that distinguishes between women with
malignant and benign ovarian adnexal mass could be used to
avoid over-diagnostic surgery. Application of MUCIN-16 and
other biomarkers, including WFDC2 (WAP Four-Disulfide Core
Domain 2, also known as HE4—human epididymal protein 4),
such as in the ROMA Score (Ovarian Malignancy Risk Algo-
rithm), can increase the sensitivity to 94.8% at a specificity of 75%8

in patient cohorts with predominantly (74.6%) late stage (III and
IV) ovarian cancers. However, the low sensitivity for detection of
early-stage ovarian cancer still prohibits population screening
using current biomarker tests. A recent study in the UK suggests
that multi-modal tests are approaching sufficient accuracy to
justify screening from a health-economic stand-point9. However,
tests with low specificity have a high false positive rate, which will
result in unnecessary anxiety and examinations and also an
additional cost for the health-care system.

The presently available biomarkers are mainly used to improve
diagnosis of women that experience symptoms or when imaging
such as TVU or computer tomography (CT) indicate adnexal
ovarian mass. The tests/algorithms then triage patients in need
of surgery at tertiary cancer centers. Even in this context, iden-
tification of clinically useful biomarkers based on single or
combination of proteins is challenging. Recent developments of
high-throughput technologies for detection and quantification of
proteins has made it possible to study thousands of biomarker
candidates in a single sample. Skates and colleagues10 have pre-
sented a statistical framework for study design, sample size cal-
culation in discovery and replication stages and for identification
of single biomarkers that can distinguish between cases and
controls, with special reference to ovarian cancer. They recom-
mend selection of the highest ranking 50 biomarkers from a
discovery stage, which are then examined in a replication stage. A
smaller set of replicated markers is then used to build a classifier
that is tested in clinical validation studies. We have previously
shown11 that plasma protein levels for several protein biomarkers
are highly correlated. This implies that sets of proteins can be
identified in a discovery stage whose combined predictive power
is not greater than their individual contribution. Also, biomarkers
that are not significant on their own can increase the predictive
power in combination with other, individually significant or non-
significant, biomarkers. An alternative approach to the frame-
work presented by Skates10 is to use multivariate methods from
the start, searching for combinations of biomarkers that separate
cases from controls. Sample size estimates based on statistical
power in relation to prediction models with linear regression

is however not straightforward, and several suggestions have been
presented12–15. All these methods rely on a range of assumptions
on underlying distributions of the variables and outcome, the
number of variables and expected correlation between the pre-
dicted outcomes and the actual outcomes. These factors are
commonly unknown a priori, making such calculations difficult
before the discovery stage.

One approach for finding optimal combinations of highly
predictive biomarkers is to use exhaustive searches, such as the
approach taken by Han and colleagues16, where 165 combina-
tions of MUCIN-16 and a selection of three out of 11 additional
biomarkers were examined for their ability to separate high-
grade serous ovarian carcinoma from benign conditions. Such
exhaustive approaches quickly become computationally unfea-
sible when the number of candidate proteins is high. For instance,
choosing 4 from 1000 proteins can be done in over 40 billion
ways. Another strategy is to use feature selection with machine
learning frameworks to select subsets of informative markers
from a larger set. Such approaches have previously been used to
construct a classifier with 9 proteins selected from 299 in cyst-
fluid separating Type 1 and Type 2 ovarian cancers17, or to build
a classifier with 12 biomarkers selected from 92 in sera, separating
ovarian cancer from healthy controls or benign conditions18. This
is achieved by splitting the samples into a training and a test set,
but with fairly small sample sizes different models are usually
generated depending on the subset of samples used for training.
To overcome these limitations, we developed a novel analysis
strategy based on building models separating ovarian cancer from
benign tumors, where we first identify smaller sets of proteins
that are robustly selected across several splits, so-called cores. In
the second step, we build a model by extending a core with
additional proteins that have high predictive power in combina-
tion with the specific core.

Here, we aim to identify multiple mutually exclusive biomarker
signatures differentiating benign conditions from ovarian cancers
at different stages, grades and all histological subtypes. The sig-
natures should be practically useful and therefore contain up
to 20 proteins selected from a total of 593 characterized plasma
proteins in one discovery cohort and two replication cohorts.
We finally identify one model based on 11 biomarkers and age
that we implement as a custom multiplex PEA assay reporting
in absolute concentrations, and validate its performance in a third
independent cohort.

Results
Characterization of plasma proteins. A total of 552 proteins
were characterized in the discovery cohort (n= 169, Table 1) and
two replication cohorts (n= 248, Table 1) using the proximity
extension assays (PEA) with 6 of the Olink Proseek panels
(Cardiometabolic, Cell Regulation, Development, Immune
Response, Metabolism, and Organ Damage) (Methods). These
measurements were combined with a previous study19 containing
data from 5 PEA panels, 460 proteins, in the discovery cohort,
bringing the total number of unique proteins included in the
analysis to 981. Forty-two of the 460 proteins have also been
quantified in the replication cohorts using the proximity exten-
sion assay in two custom 21-plex panels as previously described19.
Following quality controls and normalization (Methods), a
common set of 593 proteins (42 proteins from the previous 5
panels and 551 from the additional 6 panels) characterized in all
samples were used.

484 distinct predictive models for ovarian cancer. Models were
generated using only the discovery data, according to our two-
stage strategy. First, mutually exclusive protein cores, consisting
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of a smaller set of proteins, were selected by repeatedly splitting
the data into training and test sets and retaining proteins that
were present in at least 70% of the models (Methods, Fig. 1a, b).
Additional biomarkers were subsequently added to each core
using a stepwise forward selection approach (Methods, Fig. 1c).
The addition of proteins was terminated when the total model
size was 20 proteins, or the next protein to be added did not
substantially increase the performance of the model (Methods).
Using this strategy, we generated models to distinguish benign
tumors from ovarian cancer stages I–II, III–IV, and I–IV with
focus on either sensitivity, specificity or both (Methods). This
analysis resulted in 484 unique models with at least one protein
not overlapping between each pair of models (mutually exclusive
protein signatures). The individual performance in the test-
partition of the discovery data for the highest ranking 50 models
is shown in Fig. 2a. MUCIN-16, which is the clinically most
useful single biomarker today, was the most common protein
across cores in the 50 highest ranking models by sorting on
their average sensitivity and specificity in the test set from the

discovery data (Fig. 2b). Our search strategy specifically excludes
sets of protein, and 448 of the detected cores did not contain
MUCIN-16. In general, when MUCIN-16 was not included, the
models contained a higher number of proteins (9–20) than when
it was included (8–17). In total, 371 proteins were included in a
core, or as an additional protein in at least one model. Among
the top-ranking 50 cores and models, 19 proteins made up the
core-set and additional 115 proteins were selected in the addition
phase (Fig. 2b, c). The performance of the 484 models in the test
data is listed in Table 2 and a complete account of the models and
their performances are listed in Supplementary Data 2.

Model performances in the replication cohorts. The perfor-
mance of each model created from the discovery data was then
evaluated in two replication cohorts (see Methods). The perfor-
mance ranges of the models are shown in Table 2. The top-
ranking models all contained MUCIN-16, but overall, the average
performance of models with MUCIN-16 did not display any

Table 1 Cohort statistics

Cohort Origina Types No of Women Age, mean (SD) CA-125b

Discovery Gbg Benign tumors 90 60.0 (16.8) 16.8 (9.9)
Stage I–II 42 60.7 (12.4) 67.6 (72.0)
Stage III–IV 37 63.8 (14.1) 327.4 (284.5)

1st Replication Gbg Benign tumors 71 60.2 (14.5) NA
Stage I–II 44 62.4 (13.7) NA
Stage III–IV 56 61.6 (11.3) NA

2nd Replication UCAN Stage I–II 13 55.9 (15.0) NA
Stage III–IV 64 59.4 (12.0) NA

3rd Replication Gbg Benign tumors 106 57.9 (16.1) 31.5 (29.7)
Borderline 28 49.4 (19.6) 58.0 (50.4)
Stage I–II 25 65.2 (10.0) 96.5 (116.4)
Stage III–IV 65 61.4 (12.2) 739.0 (812.5)

aUCAN: collection at Uppsala Biobank, Uppsala University, Sweden. Gbg: Gynaecology tumor biobank at Sahlgrenska University Hospital, Göteborg, Sweden
bMeasured at clinic [U/L], median (median absolute deviation). NA indicates ‘not available’
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Fig. 1 Model Generation. (a) Repeated model generation over random splits of the data. Proteins present in a sufficient fraction of the models are included
into the core. b Generation of mutually exclusive cores. Proteins present in the first core (top node) are sequentially withheld from the second round of
core discovery, as indicated by the sets to the left of the nodes. Each core of size N generates N new search-branches. c The final models are built by
adding proteins to each core. The added proteins are chosen with respect to the proteins excluded in the core-discovery. Proteins are added in a stepwise
forward selection choosing the protein that explains the highest proportion of remaining variance in the decision. See Methods for details
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Table 2 Performance ranges of all models

Stagea MUC16b No. Size Cohort AUC PPV NPV BPsensc BPspecc FSEsed FSEspd FSPsed FSPspd

I–II Yes 36 8–17 Discovery 0.80–0.94 0.71–0.89 0.89–0.97 0.77–0.95 0.84–0.93 0.99–1.00 0.04–0.14 0.58–0.90 0.95–0.96
1st Repl. 0.58–0.71 0.55–0.69 0.75–0.81 0.63–0.74 0.68–0.80 NA NA 0.16–0.45 0.94–0.95
2st Repl. 0.49–0.83 0.30–0.59 0.92–0.98 0.74–0.92 0.68–0.83 1.00–1.00 0.06–0.06 0.12–0.51 0.94–0.95

No 448 9–20 Discovery 0.54–0.91 0.44–0.84 0.76–0.94 0.60–0.89 0.61–0.91 1.00–1.00 0.04–0.07 0.13–0.77 0.95–0.96
1st Repl. 0.46–0.82 0.50–0.77 0.69–0.89 0.53–0.83 0.64–0.84 0.99–1.00 0.06–0.09 0.16–0.59 0.94–0.96
2st Repl. 0.41–0.93 0.27–0.78 0.89–1.00 0.71–0.98 0.63–0.92 1.00–1.00 0.05–0.06 0.08–0.81 0.94–0.95

III–IV Yes 36 8–17 Discovery 0.95–0.96 0.94–1.00 0.98–1.00 0.95–1.00 0.97–1.00 1.00–1.00 0.04–0.10 0.93–1.00 0.95–0.96
1st Repl. 0.85–0.92 0.82–0.93 0.88–0.93 0.84–0.91 0.86–0.95 0.97–0.98 0.11–0.31 0.68–0.86 0.95–0.96
2st Repl. 0.75–0.91 0.76–0.92 0.77–0.92 0.74–0.90 0.79–0.93 0.95–0.96 0.15–0.50 0.50–0.82 0.94–0.96

No 448 9–20 Discovery 0.94–0.96 0.89–1.00 0.97–1.00 0.93–1.00 0.95–1.00 0.99–1.00 0.04–0.12 0.90–1.00 0.95–0.96
1st Repl. 0.78–0.90 0.78–0.95 0.82–0.92 0.76–0.91 0.80–0.96 0.96–0.99 0.07–0.34 0.54–0.87 0.94–0.96
2st Repl. 0.77–0.94 0.77–0.96 0.77–0.97 0.74–0.97 0.78–0.97 0.95–0.97 0.19–0.69 0.42–0.92 0.94–0.96

I–IV Yes 36 8–17 Discovery 0.88–0.94 0.88–0.95 0.86–0.96 0.85–0.95 0.89–0.96 0.95–0.96 0.32–0.74 0.76–0.93 0.95–0.96
1st Repl. 0.75–0.83 0.83–0.89 0.69–0.75 0.73–0.80 0.77–0.87 0.95–0.96 0.09–0.24 0.47–0.65 0.95–0.96
2st Repl. 0.70–0.87 0.75–0.89 0.70–0.87 0.71–0.87 0.73–0.89 0.95–0.95 0.14–0.59 0.39–0.73 0.95–0.96

No 448 9–20 Discovery 0.74–0.92 0.76–0.93 0.76-0.90 0.70–0.88 0.79–0.93 0.95–0.96 0.04–0.55 0.49–0.84 0.95–0.96
1st Repl. 0.67–0.84 0.78–0.92 0.60–0.80 0.62–0.83 0.73–0.90 0.95–0.96 0.04–0.35 0.35–0.72 0.95–0.96
2st Repl. 0.75–0.93 0.77–0.95 0.73–0.96 0.74–0.96 0.75–0.95 0.95–0.96 0.16–0.83 0.41–0.91 0.94–0.96

All ranges indicate lowest and highest values for all models on that row
‘NA’ means that not such point exists
aPerformances are for benign tumors vs this stage of ovarian cancers
bIndicates whether or not Mucin-16 was included in the model
cPerformances when cut-off is chosen at the best point (BP, closest point on ROC-curve to perfect classification)
dPerformances at a point on the ROC-curves with at least 0.93 sensitivity (FSEse and FSEsp) or specificity (FSPse and FSPsp)
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pattern in terms of improved result relative to those without
MUCIN-16. About one third of the performance measurements
showed statistically higher scores in models with MUCIN-16,
about one-third had lower scores and the last third did not show
any significant difference in score (Wilcoxon ranked sum test,
Bonferroni adjusted p-values, Supplementary Data 3).

Top-ranking model. The top-ranking of the 484 models included
a three-protein core with MUCIN-16, TACSTD2, and SPINT1.
This core was extended with 11 additional proteins (FCGR3B,
TRAF2, GKN1, CST6, SEMA4C, NID2, CEACAM1, CLEC6A,
MILR1, CA3, and CDH3). The distribution of abundance levels
for the core proteins in the 1st replication in patients with ovarian
cancer stages III–IV and those with benign tumors are shown in
Fig. 3a. The core proteins have clearly deviating levels between
the cancer cases and controls and this is further illustrated by a
principal component analysis (PCA) based on the three core
proteins (Fig. 3b). The additional proteins were then selected
based on explained variance in the decision after adjustment for
the variance explained by the proteins in the core (Methods).
Therefore, some of the additional proteins (Fig. 3c) do not differ
in abundance between cases and controls when examined sepa-
rately, but contribute to the separation when examined in com-
bination with the previously included proteins. The separation
between benign tumors and ovarian cancer stages III–IV for the
top-ranked 14-protein model is shown in the PCA in Fig. 3d.

Receiver operating characteristic (ROC) curves for benign
tumors versus ovarian cancer stages I–II, III–IV, and I–IV are
shown in Fig. 3e–g. Similar illustrations for the discovery and 2nd
replication cohort are given as Supplementary Figs. 1 and 2. For
separating benign tumors from ovarian cancer stages III–IV, the
top-ranked 14-protein model had an area under the curve (AUC)
of 0.9, a sensitivity= 0.99 and a specificity= 1.00 in the test-
proportion of the discovery data. In the test proportion of the 1st
replication data, the model had an AUC= 0.89, a positive
predictive value (PPV) of 0.93, a sensitivity= 0.89 and a
specificity= 0.95. This should be compared to MUCIN-16 which
by itself had an AUC= 0.70, a PPV= 0.81, a sensitivity= 0.86
and a specificity= 0.85 in same cohort (Fig. 3f, Table 3). At a
sensitivity above 0.93 in the 1st and 2nd replication cohorts, the
model achieved a specificity of 0.27 and 0.28, respectively, and at
a specificity above 0.93 a sensitivity of 0.86 and 0.80. Performance
measures for the discovery and replication cohorts for all the
different stages investigated are listed in Table 3.

Proof-of-concept model for practical use. Several factors in
addition to the ability to separate cases and controls may influ-
ence the choice of the proteins included in a multiplex test, such
as comparison with established tests, measurable concentration
range, and sensitivity of proteins to hemolysis of red blood cells
causing leakage of proteins into the plasma. Taking these lim-
itations into account, we again started from the top-ranking core
of the 484 models and allowed additional selection but restricted
the search to proteins present in models with the highest per-
formance in the discovery cohort. This list of possible additions
was filtered by removing proteins sensitive to exposure to
hemolysate20 and proteins that occur in much higher con-
centrations in human plasma than those in the selected core, and
therefore would need to be diluted before assayed with PEA20.
Here, we removed proteins required less than 7.5 mg/ml hemo-
lysate, or that required dilution of 1:2025 and this filtering process
retained 414 proteins. We then performed model selection as
before based solely on the discovery data (benign tumors versus
ovarian cancer stages III–IV) and identified a model consisted of
8 proteins. We finally added three proteins (WFDC2, KRT19, and

FR-alpha) based on their previous association with ovarian cancer
stages I–II in our modeling, or in the previous literature18,21,22.
The selected 11-protein panel consisted of the three core proteins
MUCIN-16, SPINT1, TACSTD2, and the additional proteins
CLEC6A, ICOSLG, MSMB, PROK1, CDH3, WFDC2, KRT19,
and FR-alpha. The performance of this 11-protein panel was
evaluated in the two replication cohorts (Table 3). In the 1st
replication cohort the AUC= 0.90, PPV= 0.94, sensitivity= 0.91
and specificity= 0.95 to distinguish benign tumors from ovarian
cancer stage III–IV.

Validation of proof-of-concept model. In order to validate the
performance of the 11-protein proof-of-concept model we then
developed a custom PEA-assay23 that measured the 11 proteins
and used this to characterize protein abundance levels in a third
replication cohort (Tables 1 and 3). Here, calibration samples
(see Methods for details) were included in the custom assay in
order to have the final readout in absolute protein concentrations
rather than NPX. Concentration ranges of the custom assay and
performance measures are given in Supplementary Data 4. The
third replication cohort was first split into two equal parts, a
training set, and a validation set, in terms of size and proportion
of benign and malignant (stages I–IV) tumors. A linear regression
model was then trained, employing fivefold cross-validation using
the training part only. In the training-set this model achieved an
AUC of 0.93 (%95 CI 0.88–0.98) in separating benign from stages
I–IV (malignant), and a similar performance was observed in
the validation set (AUC= 0.95, %95 CI 0.91–1.00, Fig. 4a). Since
the performance in the validation set was highly similar to the
training set with no statistical difference (DeLong's test, p-value
= 0.53), a final model was generated using fivefold cross-
validation with the entire third replication cohort in order to
capture as much variation as possible. This model (Supplemen-
tary Data 4) achieved an AUC of 0.94 (%95 CI 0.91–0.98) with a
sensitivity of 0.86 at a specificity of 0.93 at the point closest to
perfect classification (Supplementary Data 5). Next, we trained a
model using the 11 proteins and age at diagnosis (Supplementary
Data 4, Fig. 4a). As before, there was no difference in AUC for the
training and validation sets (DeLong's test, p-value= 0.62) and
using the whole cohort, this model achieved an AUC of 0.94 (%95
CI 0.91–0.98) with a sensitivity of 0.85 at a specificity of 0.93 at
the point closest to perfect classification. This was determined at a
cut-off of 0.3937. We also recorded cut-offs for focus on sensi-
tivity or specificity over 0.98. With this focus, the model achieved
sensitivity and specificity of 0.99/0.31 or 0.77/0.98 at cut-offs of
0.2501 and 0.5474, respectively (Table 4). We also trained a
model based on WFDC2, Mucin-16 and age at diagnose for
comparison and a model based on age and 7 biomarkers
(MUCIN-16, TACSTD2, MSMB, PROK1, WFDC2, KRT19, and
FR-alpha) that excluded the proteins with the highest technical
variation in our custom-assay (Supplementary Fig. 3). In both
these models there was no difference in performance between the
training and validation proportions of the data (DeLong's test p-
values= 0.60 and 0.34, respectively) and again, final models were
created based on the entire cohort. Performance measures for all
4 models based on the custom assay are available in Supple-
mentary Data 5. In general, the models trained on benign vs
malignant (stages I–IV) tumors are better at separating late stages
(stages III–IV, AUC-range 0.95–0.98) than early (stages I–II,
AUC-range 0.79–0.88) and has lower performance separating
stages I–II from stages III–IV (AUC-range 0.74–0.77, Fig. 4b,
Supplementary Data 5).

Finally, we included also samples from the third replication
cohort that had been diagnosed with borderline ovarian cancer
and plotted the prediction scores from the 11 proteins plus age
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Fig. 3 Top-ranking model performance in 1st replication cohort. a Distribution of protein abundance levels in NPX for the three proteins in the core in
patients with Benign tumors (indicated with a ‘B’) and ovarian cancer stage III–IV (indicated with ‘OC’). Horizontal black lines indicate mean of the protein
abundance levels. b PCA plot of the first two components using the proteins in the core. Figures show Benign tumors in black and ovarian cancer stages
III–IV in red. c As (a) but for the six first additional proteins in the model. d As (b) but for the complete model with 14 proteins. e–g Receiver operating
characteristic (ROC) curves of the performance of the complete model in the 1st replication cohort. From top to bottom, the ROC-curves represent Benign
tumors vs. Ovarian cancer stages I–II, III–IV, and I–IV, respectively
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model alongside of the benign and malignant samples (Fig. 4c).
From Fig. 4c left panel it is clear that only samples with stages II
or higher have prediction scores above 0.9 while only benign or
borderline samples have a score lower than 0.15. As compared to
the use of the WFDC2, MUCIN-16 plus age model (Fig. 4d, left
panel), there is a more than 2-fold increase in the number of
women that fall in these prediction score categories, i.e., above 0.9
(n= 34 vs 5) or below 0.15 (n= 15 vs 5). This is also illustrated in
Figure 4c, d, right panels, where the distribution of prediction
scores for each diagnosis is shown. The cut-offs used for “best
point”, high sensitivity or high specificity are also illustrated by
horizontal lines. The prediction scores from the 11 protein plus
age model in late stage ovarian cancers (Stages IV) are
significantly higher than that of the 2 protein plus age model,
while the predictions scores in the Benign group are significantly
lower (Wilcox-test, Bonferroni adjusted cut-off: 0.05/6= 8.3 ×
10–3, p-values= 5.5 × 10−3 (Stage IV) and 2.0 × 10−6 (Benign),
respectively). The prediction scores for the borderline samples fall
between the benign and stage I samples (Fig. 4c, right panel) and
there is not obvious cut-off that for distinguishing these from
either the benign or malignant tumor samples.

Discussion
The current study was designed to identify mutually exclusive
predictive biomarker signatures containing up to 20 plasma
proteins differentiating benign tumors from different stages of
ovarian cancers. We started from a large number of plasma
proteins, not selected based on prior association with ovarian
cancer, utilizing high-throughput multiplexed proteomics assays.
The models were developed using a discovery cohort, and the
performance of the models was then evaluated using two repli-
cation cohorts. In addition to the 484 biomarker signatures
obtained using our computerized strategy, we developed one
model considering protein-specific criteria such as abundance
range and sensitivity to hemolysis. Finding combinations of

predictive, robust, biomarkers is computationally intensive, and
with many hundreds of proteins, exhaustive searches of combi-
nations of up to 20 proteins is not feasible. To this end, we
developed a strategy for identification of highly predictive unique
signatures using hierarchical exclusion of individual proteins. By
design, this led to the discovery of many signatures that did not
contain MUCIN-16, although this protein was the strongest
univariate biomarker among the ones we studied. Overall, the
signatures without MUCIN-16 contained a higher number of
different proteins than signatures with MUCIN-16, but there was
no clear difference in prediction performance of the group with
and without MUCIN-16. Our top-ranking model achieved a
sensitivity of 0.99 and specificity of 1.0 in the test proportion of
the discovery data for separating benign tumors from ovarian
cancer stage III–IV. A recent study by Boylan and colleagues18

reports perfect classification (AUC= 1.0 and AUC= 1.0) of
benign tumors and late-stage ovarian cancer and very high per-
formances (AUC= 0.98 and AUC= 0.85) using either MUCIN-
16 or WFDC2 alone, by analysis of a single cohort with proteins
measured using the same PEA technology as in our study. In our
1st replication cohort, MUCIN-16 alone had lower AUCs of 0.70,
0.65, and 0.51 for separating benign tumors from ovarian cancer
stages III–IV, I–IV, and I–II, respectively (Fig. 3f, g). The dif-
ference in performance between our study and that by Boylan and
colleagues18 could be due to geographic origin of the cohorts
(USA and Sweden), biological nature of the sample (i.e., serum
versus plasma), or differences in sample sizes and model eva-
luations. Boylan and colleagues18 used 21 women with benign
conditions and 21 with late-stage ovarian cancer, as compared to
71 and 56 in our study. Another study by Han and colleagues16

reported a sensitivity of 0.87 at a specificity of 1.0 for separating
benign tumors from ovarian cancer stage I–IV, using the four
proteins MUCIN-16, E-CAD, WFDC2, and IL-6. Our top-ranked
model had a sensitivity of 0.85 and specificity of 0.91 under the
same conditions. Similar to the results of these previous
studies16,18, the performance of our models in the test-proportion

Table 3 Performance of the top-ranking and the proof-of-concept model

Stagea Cohort AUC PPV NPV BPseb BPspb FSEsec FSEspc FSPsec FSPspc

Mucin-16 only
I–II Discovery 0.82 (0.07) 0.68 (0.14) 0.92 (0.04) 0.85 (0.09) 0.82 (0.08) 1.00 (0.01) 0.06 (0.06) 0.60 (0.16) 0.96 (0.01)

1st Repl. 0.51 (0.1) 0.62 (0.13) 0.79 (0.09) 0.71 (0.13) 0.71 (0.12) 1.00 (0.01) 0.20 (0.07) 0.29 (0.15) 0.94 (0.01)
2nd Repl. 0.27 (0.15) 0.25 (0.16) 0.87 (0.09) 0.65 (0.23) 0.51 (0.22) 1.00 (0) 0.15 (0.09) 0.06 (0.12) 0.96 (0.03)

I–IV Discovery 0.86 (0.04) 0.88 (0.08) 0.87 (0.06) 0.86 (0.06) 0.89 (0.07) 0.95 (0.01) 0.31 (0.26) 0.75 (0.11) 0.96 (0.01)
1st Repl. 0.65 (0.08) 0.83 (0.06) 0.73 (0.10) 0.79 (0.09) 0.78 (0.08) 0.96 (0.01) 0.26 (0.12) 0.52 (0.14) 0.96 (0.02)
2nd Repl. 0.57 (0.09) 0.78 (0.08) 0.70 (0.09) 0.69 (0.09) 0.78 (0.10) 0.95 (0.01) 0.27 (0.12) 0.45 (0.16) 0.95 (0.02)

III–IV Discovery 0.91 (0.06) 0.95 (0.11) 0.95 (0.11) 0.96 (0.06) 0.98 (0.05) 1.00 (0) 0.06 (0.03) 0.94 (0.08) 0.96 (0.01)
1st Repl. 0.70 (0.08) 0.81 (0.09) 0.81 (0.09) 0.86 (0.07) 0.85 (0.08) 0.98 (0.03) 0.24 (0.14) 0.68 (0.16) 0.95 (0.01)
2nd Repl. 0.60 (0.08) 0.79 (0.10) 0.79 (0.10) 0.75 (0.09) 0.81 (0.07) 0.96 (0.03) 0.31 (0.16) 0.49 (0.14) 0.95 (0.02)

Top-ranking
I–II Discovery 0.83 (0.06) 0.74 (0.15) 0.91 (0.05) 0.81 (0.09) 0.86 (0.09) 1.00 (0.01) 0.06 (0.08) 0.60 (0.18) 0.96 (0.01)

1st Repl. 0.61 (0.09) 0.60 (0.13) 0.75 (0.10) 0.64 (0.13) 0.70 (0.12) 0.99 (0.03) 0.04 (0.02) 0.26 (0.15) 0.95 (0.02)
2nd Repl. 0.65 (0.18) 0.42 (0.22) 0.95 (0.05) 0.80 (0.20) 0.74 (0.17) 1.00 (0) 0.06 (0.01) 0.30 (0.27) 0.95 (0.01)

I–IV Discovery 0.88 (0.04) 0.91 (0.06) 0.86 (0.06) 0.85 (0.06) 0.91 (0.06) 0.95 (0.01) 0.38 (0.18) 0.78 (0.09) 0.96 (0.01)
1st Repl. 0.79 (0.06) 0.85 (0.07) 0.71 (0.09) 0.74 (0.08) 0.83 (0.09) 0.96 (0.01) 0.09 (0.14) 0.58 (0.13) 0.95 (0.02)
2nd Repl. 0.85 (0.05) 0.88 (0.06) 0.84 (0.08) 0.86 (0.07) 0.87 (0.06) 0.95 (0.01) 0.35 (0.29) 0.73 (0.12) 0.96 (0.02)

III–IV Discovery 0.95 (0.01) 1.00 (0.02) 1.00 (0.02) 0.99 (0.03) 1.00 (0.01) 1.00 (0) 0.04 (0) 0.99 (0.03) 0.96 (0.01)
1st Repl. 0.89 (0.04) 0.93 (0.07) 0.93 (0.07) 0.89 (0.06) 0.95 (0.05) 0.97 (0.03) 0.27 (0.31) 0.86 (0.10) 0.95 (0.01)
2nd Repl. 0.87 (0.05) 0.89 (0.09) 0.89 (0.09) 0.88 (0.06) 0.90 (0.08) 0.95 (0.02) 0.28 (0.31) 0.80 (0.13) 0.94 (0.01)

Proof-of-Concept
I–II Discovery 0.83 (0.06) 0.72 (0.13) 0.91 (0.05) 0.83 (0.08) 0.84 (0.08) 1.00 (0.01) 0.05 (0.06) 0.60 (0.19) 0.96 (0.01)

1st Repl. 0.69 (0.10) 0.63 (0.11) 0.82 (0.11) 0.77 (0.13) 0.69 (0.11) 0.99 (0.02) 0.05 (0.02) 0.37 (0.15) 0.95 (0.02)
2nd Repl. 0.70 (0.20) 0.58 (0.27) 0.95 (0.05) 0.80 (0.18) 0.82 (0.2) 1.00 (0) 0.06 (0) 0.54 (0.31) 0.94 (0.01)

I–IV Discovery 0.88 (0.04) 0.88 (0.06) 0.89 (0.06) 0.87 (0.07) 0.90 (0.06) 0.95 (0.01) 0.40 (0.22) 0.79 (0.09) 0.96 (0.01)
1st Repl. 0.82 (0.05) 0.87 (0.08) 0.75 (0.08) 0.79 (0.07) 0.85 (0.09) 0.96 (0.01) 0.20 (0.18) 0.66 (0.12) 0.95 (0.01)
2nd Repl. 0.83 (0.04) 0.87 (0.07) 0.84 (0.07) 0.83 (0.08) 0.87 (0.07) 0.95 (0.01) 0.36 (0.23) 0.68 (0.11) 0.95 (0.01)

III–IV Discovery 0.95 (0.02) 0.99 (0.03) 0.99 (0.03) 0.98 (0.04) 1.00 (0.01) 1.00 (0) 0.04 (0) 0.98 (0.04) 0.96 (0)
1st Repl. 0.90 (0.04) 0.94 (0.06) 0.94 (0.06) 0.91 (0.07) 0.95 (0.05) 0.97 (0.03) 0.27 (0.31) 0.88 (0.10) 0.95 (0.02)
2nd Repl. 0.84 (0.06) 0.88 (0.07) 0.88 (0.07) 0.85 (0.08) 0.89 (0.07) 0.95 (0.02) 0.32 (0.30) 0.73 (0.14) 0.95 (0.02)

aPerformances are for benign tumors vs this stage of ovarian cancers
bPerformances when cut-off is chosen at the best point (BP, closest point on ROC-curve to perfect classification)
cPerformances at a point on the ROC-curves with at least 0.93 sensitivity (FSEse and FSEsp) or specificity (FSPse and FSPsp)
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of the discovery data is very good, with some models showing
perfect classification. We also evaluated the selected models in
two replication cohorts and found the performance similar, while
somewhat lower than in the discovery set. This either implies that
there are underlying differences between the cohorts, such as in
pre-analytical conditions, or that the models are over-trained with

respect to the samples in the discovery cohort. The performance
in the test-proportion of the discovery cohort should, therefore,
be considered less certain than the results obtained in the repli-
cation cohorts. In our study, the benign tumors and the cancer
samples from the 2nd replication cohort differ in pre-analytical
context, which could explain part of the lower performance as
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compared to using the 1st replication cohort. We then imple-
mented our final, proof-of-concept, model into a custom assay
reporting in absolute protein concentrations. Since the readout
for the custom assay differ from the standard PEA-readout used
in the discovery and first two replication cohorts the model
coefficients needed to be retrained. This could lead to overfitting
of the model to the investigated cohort. To try and overcome this,
we employed a 5-fold cross-validation schema to train the final
model using 50% of the third replication cohort and kept a
withheld validation proportion to estimate the performance on
samples not used in the training. As the performance in these two
subsets did not essentially differ, the retraining of the models does
not seem to be overfitted with respect to the samples used. We,
therefore, used a 5-fold cross-validation schema using the entire
third replication cohort for the final model fitting. This does
however not necessarily guarantee that the performance of the
model will remain the same in additional cohorts with e.g., dif-
ferent ethnic compositions or when applied to samples with large
differences in pre-analytical handling. We also noted that the
performance of our model is slightly better in the third replication
cohort, where the AUC was 0.95 (%95 CI 0.91–1.00) in the
validation-proportion, as compared to the performance in the
test-proportion of the discovery and first two replication cohorts,
where the model had AUCs ranging from 0.82–0.88. This could
be due to the wider dynamic range of the custom assay, but
indicates that the performance of the model is robust. A second
contributing factor could be that cases are compared to a group
diagnosed with benign tumors, representing heterogenous con-
ditions. In the third replication cohort used here, the most
common benign tumors were diagnosed as ‘Serous cyst’ (29.2%),
followed by ‘Mucinous cyst’ (20.8%), ‘Mesonephric or inclusion
cyst’ (17.0%), ‘Stromal cyst’ (11.3%), ‘Teratoma’ (11.3%), ‘Endo-
metrioma’ (6.6%) and finally, ‘Myoma’ (3.8%). This highlights the
importance of understanding the context in which a biomarker
test is to be used as compared to the setting used for development
of the model.

We note that there is a group (n= 3) of late=stage cancers that
gets low prediction scores using our model (Fig. 4c, right panel,
stage IV). Comparing this group with low scores to the others
diagnosed with the same stage (n= 21), we found no statistical
difference (wilcox.test, two-sided) in either age (p= 0.50), BMI
(p= 0.93). These 3 samples do however have lower clinical
Mucin-16 values (p= 0.011) with a median value of 49.5 U/ml
compared to the group with high prediction scores that have a
median value of 1312.5 U/ml. From this observation, it is clear
that there are samples that will still be hard to find or distinguish
using the biomarker model presented here.

Some of the proteins in the 11-protein panel, aside from
MUCIN-16 and WFDC2 (HE4), have previously been associated
to ovarian cancer. TACSTD2 (tumor-associated calcium signal
transducer 2) expression has been associated with decreased
survival of ovarian cancer and proposed as a prognostic factor24,
and a biomarker for targeted therapy25. SPINT1 (matriptase,
HAI-2) is a type II transmembrane serine protease expressed on
epithelial ovarian tumor cells. In advanced stage ovarian tumors,
matriptase is expressed in the absence of HAI-1, its inhibitor,
indicating that an imbalance between matriptase and HAI-1 is
important in the development of ovarian disease26. Matriptase
has also been proposed as an adjuvant therapeutic target for
inhibiting ovarian cancer metastasis27. Analysis of circulating
tumor cell RNA has seen an increased expression of KRT19
(keratin, type I cytoskeletal 19), but no studies of the plasma
protein level have been performed28. FR-alpha (folate receptor
alpha, FR-alpha) is a GPI-anchored glycoprotein and serum levels
has been found to be elevated in ovarian cancer patients29,30 and
correlated to both clinical stage and histological type31,32. Finally,
decreased expression of MSMB (beta-microseminoprotein) has
been shown to correlate with reduced survival of invasive ovarian
cancer33.

In order to study the potential of using the protein panels in
diagnosis or screening, we determined their performance after
tuning the models prioritizing either specificity or sensitivity. A

Table 4 Performance of the custom assay in the independent replication cohort, combined analysis

Full modela MUCIN-16 and WFDC2 and Age

Benign
vs Malign

Benign vs
Stage I–II

Benign vs
Stage III–IV

Stage I–II vs
Stage III–IV

Benign
vs Malign

Benign vs
Stage I–II

Benign vs
Stage III–IV

Stage I–II vs
Stage III–IV

AUC 0.94 (0.91-
0.98)

0.88
(0.81–0.96)

0.98 (0.96-1) 0.74
(0.63–0.86)

0.90
(0.85–0.95)

0.79
(0.67–0.91)

0.95
(0.92–0.99)

0.77
(0.65–0.88)

PPVb 0.92 0.71 0.90 0.78 0.97 0.88 0.97 0.80
NPVb 0.88 0.93 0.95 0.62 0.83 0.90 0.92 0.55
BPcutc 0.3937 0.3937 0.3937 0.3937 0.5117 0.5117 0.5117 0.5117
BPse 0.85

(0.76–0.91)
0.68
(0.48–0.84)

0.92
(0.85–0.98)

0.92
(0.86–0.98)

0.76
(0.67–0.85)

0.56
(0.36–0.76)

0.86
(0.77–0.94)

0.86
(0.77–0.94)

BPsp 0.93
(0.88–0.98)

0.93
(0.88–0.98)

0.93
(0.89–0.97)

0.32
(0.16–0.52)

0.98
(0.95–1.00)

0.98
(0.95–1.00)

0.98
(0.95–1.00)

0.44
(0.24–0.64)

FSEcutc 0.1976 0.1976 0.1976 0.1976 0.2047 0.2047 0.2047 0.2047
FSEse 0.99

(0.96–1.00)
1.00
(1.00–1.00)

1.00
(1.00–1.00)

1.00
(1.00–1.00)

0.99
(0.97–1.00)

0.96
(0.88–1.00)

1.00
(1.00–1.00)

1.00
(1.00–1.00)

FSEsp 0.31
(0.23–0.40)

0.31
(0.23–0.41)

0.31
(0.23–0.40)

0
(0.00–0.00)

0.19
(0.11–0.26)

0.19
(0.12–0.26)

0.19
(0.11–0.27)

0.04
(0.00–0.12)

FSPcutc 0.4908 0.4908 0.4908 0.4908 0.5117 0.5117 0.5117 0.5117
FSPse 0.77

(0.69–0.86)
0.56
(0.36–0.76)

0.88
(0.80–0.95)

0.88
(0.78–0.95)

0.76
(0.68–0.85)

0.56
(0.36–0.76)

0.86
(0.77–0.94)

0.86
(0.77–0.94)

FSPsp 0.98
(0.95–1.00)

0.98
(0.95–1.00)

0.9
(0.95–1.00)

0.44
(0.24–0.64)

0.98
(0.95–1.00)

0.98
(0.95–1.00)

0.98
(0.95–1.00)

0.44
(0.24–0.64)

aProof-of-concept model plus age
bPerformances when cut-off is chosen at the best point (BP, closest point on ROC-curve to perfect classification)
cCut-off thresholds calculated in the Benign vs. Malign models and applied to difference subgroups. The BPcut is taken at the point on the ROC-curve closest to perfect performance. The FSEcut is taken
from point with highest specificity when requiring at least 0.98 sensitivity. The FSPcut is taken from point with highest sensitivity when requiring at least 0.98 specificity. All cells: numbers in parentheses
represent 95% confidence intervals
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diagnostic test for women with a TVU indication of adnexal
ovarian mass must possess a high sensitivity, but can accept a
moderate specificity. Previous studies predicting the risk of
malignancy in adnexal ovarian mass using TVU only5, reports
sensitivities ranging from 99.7 to 89.0% with specificities of 33.7
to 84.7% for calculated risk scores of 1 to 30% and positive
predictive values ranging from 44.8 to 75.4%. At a minimum
sensitivity of 0.98 our final 11-plex+Age model distinguishes
between women with benign tumors and ovarian cancer stage
I–IV with a specificity of 0.31 (%95 CI 0.23–0.40) at a sensitivity
of 1.0 and positive and negative predictive values of 0.47 and 1.00,
respectively. An earlier report34 retrospectively examined the
predictive value of MUCIN-16 and WFDC2 among Swedish
women that underwent surgery with suspected ovarian cancer.
Out or 373 women, 58% were found to have benign tumors and
30% have ovarian cancer (15% stage I–II, 15% stage I–IV). That
study reported a sensitivity of 61.9% at specificity of 75% with a
positive predictive value of 31.3% for MUCIN-16 and WFDC2
combined. Thus, the performance measures of the model pre-
sented here are higher than the current clinically used biomarker
combinations, but lower than the highest reported performances
of clinical specialists, albeit with a higher positive predictive value.
A combined use of both TVU and a biomarker test is likely to
give even higher specificity. An indication of the potential for
using the protein model for identification of women at risk in
population screening was obtained by studying the sensitivity at
high specificity. At a minimum specificity of 0.98, the final pro-
tein panel has sensitivity of 0.77 (%95 CI 0.69–0.86) in distin-
guishing benign tumors from women with ovarian cancer stages
I–IV (Table 4). Further studies are needed using samples collected
at different time-points prior to diagnosis to evaluate the
potential of using the panel in population screening. In screening,
the aim is not to distinguish between benign tumors and cancer,
but between healthy women and cancer, and it is likely that there
will be more pronounced differences when comparing to a
healthy population. In support of this notion, we have shown in
a previous study19 that the sensitivity to distinguish population
controls from stage I–IV cancer was 0.62 and stage III–IV was
0.78. Future studies including age-matched population controls
have to be conducted to determine the performance of the final
11-protein biomarker set in population screening.

In summary, we have developed a strategy for the identification
of protein cores that resulted in mutually exclusive combinations
of protein signatures that can separate between benign tumors
and ovarian cancers. The results demonstrate the ability to
achieve high performance characteristics without including
MUCIN-16. We also show that broad searches for novel com-
binations of protein biomarkers that on their own are not
necessarily good predictors is a powerful approach for finding
relevant biomarkers for disease.

Methods
Samples. Plasma samples of women with benign and malignant ovarian tumors
were collected from either the U-CAN collection35 at Uppsala Biobank, Uppsala
University, Sweden or the Gynaecology tumor biobank36 at Sahlgrenska University
Hospital, Göteborg, Sweden, as previously described19 (Table 1). All samples from
the biobanks were included based on ovarian cancer diagnosis or patients that had
been surgically diagnosed with benign conditions based on suspicion of ovarian
cancer. Since the distribution of individual protein abundance levels in the samples
was unknown and all available samples were to be extracted from the biobanks, no
univariate power calculations were carried out prior sample collection. Patients that
had received neoadjuvant treatment prior to surgery were excluded from the
analysis. The samples from U-CAN have been deposited from 2010 to 2016. The
samples in the Gynaecology tumor biobank were deposited from 2001 to 2018 with
the discovery cohort samples collected in 2001–2010, the first replication cohort
2012–2015 and the third replication cohort in 2016–2018. All tumors were
examined by pathologist specialized in gynaecologic cancers for histology, grade,
and stage according to International Federation of Gynaecology and Obstetrics
(FIGO) standards. All plasma samples were frozen and stored at −70 °C. The

discovery cohort consisted of 90 patients diagnosed with benign tumors and
79 patients with ovarian cancer stages I–IV. Samples were collected at time for
primary surgery under full anesthesia but before incision. All women had at least
6 h fasting before sample collection. The first replication cohort consisted of 71
patients diagnosed with benign tumors and 100 patients with ovarian cancer stages
I–IV and were collected under the same conditions as the discovery cohort. The
second replication cohort consisted of 77 patients with ovarian cancer stages I–IV.
The second replication samples were collected at time of diagnosis, from awake
patients, by a trained nurse. The third replication cohort consisted of 106 patients
with benign conditions, 28 with borderline diagnosis and 93 with ovarian cancer
stages I–IV. All samples from the third replication cohort were collected at time of
diagnosis, from awake patients, by a trained nurse.

Ethical compliance. Written consent was obtained from all participants before the
samples used here were deposited in the biobanks. One woman with her sample in the
Gynaecology tumor biobank at Sahlgrenska University Hospital withdrew her consent
after the samples had been acquired from the biobank and this sample was excluded
from the analyses conducted here. The study was approved by the Regional Ethics
Committee in Uppsala (Dnr: 2016/145) and Göteborg (Dnr: 201-15).

Protein measurements. We have previously quantified 460 proteins from the
Olink Multiplex Cardiovascular II, Cardiovascular III, Inflammation, Neurology
and Oncology panels in the discovery cohort using the proximity extension assay
(PEA)19. The PEA is an affinity-based assay which characterizes abundance levels
of a pre-determined sets of proteins. For each measured protein, a pair of
oligonucleotide-labeled antibodies probes target the protein and if both probes are
in close proximity, a PCR target sequence is formed by a proximity-dependent
DNA polymerization event. The resulting sequence is then detected and quantified
using standard real-time PCR. Forty-two of these have also been quantified in the
first and second replication cohorts using PEA in two custom-design 21-plex
panels19,23. The 42 proteins in the custom-design 21-plex proteins were selected
from the 460 based on their relationship with gynecological cancers as described
earlier19. Here, an additional 552 proteins were analyzed using 6 additional PEA-
panels (the Olink Multiplex Cardiometabolic, Cell Regulation, Development,
Immune Response, Metabolism and Organ Damage) and real-time PCR using the
Fluidigm BioMark™ HD real-time PCR platform37 in the discovery and replication
cohorts. A complete list of the 1012 assays corresponding to 981 unique proteins
are listed in Supplementary Data 1. The samples were randomized across plates
and normalized for any plate effects using the built-in inter-plate controls
according to manufacturers’ recommendations. The PEA gives abundance levels
in NPX (Normalized Protein eXpression) that is on log2-scale. Each assay has
an experimentally determined lower limit of detection (LOD) defined as three
standard deviation above noise level. Here, all assay values below LOD were
replaced with the defined LOD-value. Samples and proteins that did not pass the
quality control were removed. After quality control, 42 proteins from the custom
panels and 551 from the additional 6 panels were kept. Assay characteristics
including detection limits calculations, assay performance and validations are
available from the manufacturer (www.olink.com).

The proteins from the proof-of-concept model were quantified using a custom
11-plex assay in the analysis of the third replication cohort. Description of the
development process for combining protein assays into custom multiplexed
reactions and the technology behind having final readout in absolute
concentrations have been published earlier in a white-paper23. In brief, normal and
disease state occurring protein concentration ranges in circulating plasma are
accounted for and the dynamic range for each individual assay optimized to take
this into account. In addition, standard curves for all individual proteins have to be
established by analysis of a wide range of recombinant antigen concentrations.
In the final test, triplicate measures of calibrators at 4 known concentrations
(blank, low, mid and high concentrations) of each protein were included in each
run. These were used for normalization and the normal PEA-readout (NPX) and
to estimate absolute concentrations by comparing to established standard curves.
Here, each sample in the third replication cohort was run in duplicates or
triplicates and a mean value over the replicates was used in the analyses. If all
readouts were below or above the limits of detections, no mean-value was
calculated but instead replaced with the LOD-values as described above. The data
were then transformed to log2-scale.

Model generation. In order to identify non-overlapping models, we devised a two-
stage strategy. In brief, the strategy first identifies a small set of proteins, a ‘core’,
typically consisting of 2–6 proteins with relatively high performance. This core is
then extended with additional proteins creating a full model of up to 20 proteins.
The whole process is then repeated excluding one protein at a time from the core
ensuring that the “next” core does not overlap with a previously detected core. In
detail, the strategy breaks down into the following steps. First, the discovery set was
randomly split into a training and a test set with 50% of the samples in each. A
linear regression model was generated on the training set using the R-package
‘glmnet’38 with ‘alpha’= 0.9 and optimized using 10-fold cross-validation in the
training-set as implemented by the ‘cv.glmnet’-function. The training/test-split was
then repeated 50 times and a ‘core’ was then defined as consisting of the proteins
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present in at least 70% of the generated models from the 50 runs. In order to find
mutually exclusive cores, the core-generating process was repeated in a recursive
manner, excluding one protein at a time from the previous core from the available
protein pool presented to ‘cv.glmnet’. For each newly generated core, the process
was then repeated unless the core contained more than a specific number of
proteins or had a sensitivity or specificity below a specified cut-off. For each new
search, all previously excluded proteins were made unavailable to the current
selection. For computational reasons, the searches were cancelled if more than 20
proteins had been excluded. The process of defining the cores is outlined in Fig. 1a, b.
In the second step of the strategy, each core was extended to a full model by adding
additional proteins. These additional proteins were selected from the pool of
available proteins in a stepwise forward selection. First, the variance in the decision
explained by the core was removed by keeping the residuals from a linear model
generated with the protein values in the core as input and the decision as output.
Then, the variance explained by any other available protein in this adjusted out-
come was calculated and the protein explaining the most remaining variance in the
decision was added to the model and the contribution of that protein to the
explained variance in the decision was adjusted for as described above. The
addition of proteins was repeated until the best candidate protein did not explain
more than 1% of remaining variance or the total number of proteins in the model
exceeded 20 proteins (Fig. 1c). Different parameter settings were used to identify
models that could have either high sensitivity or high specificity or both, depending
on the final application and to account for the fact that it is much more difficult to
separate stages I and II from benign tumors compared to stages III and IV. For
benign tumors versus stages I–II, the core had to be 2–6 proteins in length and
have a sensitivity of at least 0.8, or a sensitivity and specificity above 0.6. For stages
III–IV, the allowed core size was 2–5, and had to have a sensitivity above 0.8 or a
sensitivity and specificity above 0.7. Finally, for stages I–IV the allowed core size
was 2–6 proteins, and the models were required to have a sensitivity above 0.8 or a
sensitivity and specificity above 0.7.

Performance estimates in the first two replication cohorts. As the second
replication cohorts lacked patients with benign tumors, the benign tumors from the
first replication cohort was used in both replication cohorts. Due to the relativeness
of the NPX-scale and that the data in the discovery and replication sets were
generated in different laboratory analysis runs, including parts of the data that were
generated using a custom-panel19, the replication cohorts were split into a test and
training set (50–50) and model coefficients were re-determined with the ‘lm’
function in R. The performance of the models was then estimated in the test
proportion of each replication cohort separately. This was repeated 50 times for
each model and the mean and standard deviation of sensitivity, specificity, positive
and negative predictive values (PPV/NPV) and AUCs were recorded. PPV was
calculated as TP/(TP+ FP) where TP is the number of true positives and FP the
number of false positives. NPV was calculated as TN/(TN+ FN) where TN is the
number of true negatives and FN is the number of false negatives. The sensitivity
and specificity were calculated at three different points on the ROC curve. The ‘best
point,’ defined as the closest (Euclidean distance) point to perfect classification, and
by selecting a minimum sensitivity or specificity of 0.93.

Fixation of the models in absolute concentration. The third replication cohort
and was first split into two equal parts, a training set and a validation set, in terms
of size and proportion of benign and malign (stages I–IV) samples. A linear
regression model was then trained employing fivefold cross-validation using the
training part only. The models were trained using the ‘cv.glmnet’ with alpha= 0.
The performance of the model was then evaluated on the validation set. Difference
in performance (AUC) from the training and validation was evaluated by a
DeLong-test as implemented in the R-package ‘pRoc’39. When no difference in
performance was detected between the training and validation sets, a final model
was generated fivefold cross-validation as above using all samples with benign or
malign (stages I–IV) status. Model coefficients was extracted from the cv-stage at a
λ within one standard error of the minimum (‘lambda.1se’ in ‘cv.glmnet’). R-
package ‘caret’40 was used to train the final model. In the modeling, the raw output
from the linear regression was transformed to lie between 0 and 1 by a link-
function, f xð Þ ¼ ex

ðexþ1Þ.

Statistics and reproducibility. All calculations were done using R41 (version 3.4.2).
Models were fitted using functions from the R-package ‘glmnet’38 (version 2.0–16),
‘caret’40 (version 6.0–80) and ‘pROC’39 (version 1.12.1). Performance measures for
the PEA-panels are available from the manufacturer’s webpage, www.olink.com. A
full description of the custom PEA assay including assay performance measures,
concentration ranges of all ingoing variables, all model coefficients, cut-offs, and
prediction performance measures are given in Supplementary Data 4 and 5.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The complete data including replicate measurements in absolute concentrations for the
11-plex used to validated the performance of the final model is publicly available via
Figshare at https://doi.org/10.6084/m9.figshare.7642268.
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