
Cell Metabolism

Article
Cholesteryl Ester Accumulation Induced
by PTEN Loss and PI3K/AKT Activation
Underlies Human Prostate Cancer Aggressiveness
Shuhua Yue,1 Junjie Li,2 Seung-Young Lee,1 Hyeon Jeong Lee,3 Tian Shao,4 Bing Song,2 Liang Cheng,5

Timothy A. Masterson,6 Xiaoqi Liu,4,7 Timothy L. Ratliff,3,7 and Ji-Xin Cheng1,7,*
1Weldon School of Biomedical Engineering
2Department of Biological Sciences
3Department of Comparative Pathobiology
4Department of Biochemistry

Purdue University, West Lafayette, IN 47907, USA
5Department of Pathology and Laboratory Medicine
6Department of Urology

Indiana University School of Medicine, Indianapolis, IN 46202, USA
7Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA

*Correspondence: jcheng@purdue.edu
http://dx.doi.org/10.1016/j.cmet.2014.01.019
SUMMARY

Altered lipid metabolism is increasingly recognized
as a signature of cancer cells. Enabled by label-free
Raman spectromicroscopy, we performed quanti-
tative analysis of lipogenesis at single-cell level in
human patient cancerous tissues. Our imaging data
revealed an unexpected, aberrant accumulation of
esterified cholesterol in lipid droplets of high-grade
prostate cancer and metastases. Biochemical study
showed that such cholesteryl ester accumulation
was a consequence of loss of tumor suppressor
PTEN and subsequent activation of PI3K/AKT
pathway in prostate cancer cells. Furthermore, we
found that such accumulation arose from signifi-
cantly enhanced uptake of exogenous lipoproteins
and required cholesterol esterification. Depletion
of cholesteryl ester storage significantly reduced
cancer proliferation, impaired cancer invasion capa-
bility, and suppressed tumor growth in mouse xeno-
graft models with negligible toxicity. These findings
open opportunities for diagnosing and treating
prostate cancer by targeting the altered cholesterol
metabolism.

INTRODUCTION

Cancer cells adopt metabolic pathways that differ from their

normal counterparts by high rates of glycolysis and biosyn-

thesis of essential macromolecules to fuel rapid growth (Schulze

and Harris, 2012). Among dysregulated metabolic pathways,

increased de novo synthesis of lipids has become a common

characteristic of human cancers (Santos and Schulze, 2012).

For instance, fatty acid synthase, the key enzyme that catalyzes

the terminal steps in fatty acid synthesis, is frequently upregu-
Ce
lated in human malignancies and plays important roles in cancer

pathogenesis (Menendez and Lupu, 2007; Migita et al., 2009).

In parallel with lipogenesis, lipolysis has also been shown to

be elevated in multiple human cancers (Nomura et al., 2010).

Specifically, monoacylglycerol lipase, the lipolytic enzyme that

hydrolyzes monoacylglycerols to release free fatty acids, was

found to be overexpressed in aggressive cancer cells. Based

on the findings of upregulated expressions of both lipogenic

and lipolytic enzymes, it is conceivable that cancer cells require

reservoirs for lipids, namely lipid droplets (LDs), to store newly

synthesized lipids on one hand and provide lipids for hydrolysis

on the other hand. Indeed, as early as the 1970s, LDs were

reported in clinical studies of mammary carcinoma (Ramos

and Taylor, 1974). Since then, lipid accumulation has been

described in many types of human cancers, including breast,

brain, colon, and others (Accioly et al., 2008; Hakumäki and

Kauppinen, 2000; Rosen, 2008). Nonetheless, lipid accumulation

has not, to date, been used as a prognostic factor or therapeutic

target of cancer. In particular, because compositions of LDs are

not readily accessible with traditional methods, the exact role of

lipid accumulation in cancer progression remains elusive.

LDs are visualized mainly through labeling with lipophilic

dyes, which lacks compositional information. To assay for lipid

composition, analytical tools, such as mass spectrometry and

nuclear magnetic resonance spectroscopy, are commonly

used. Because such techniques analyze tissue homogenates,

it is impossible to obtain compositional information of individual

LDs inside cells. The recently developed coherent Raman scat-

tering microscopy (Cheng and Xie, 2012) has shed new light

on the study of LD biology (Le et al., 2010; Zumbusch et al.,

2013), with its label-free detection capability, high imaging

speed, and submicron spatial resolution. Using this technique,

high-speed vibrational imaging of LD dynamics in live cells and

embryos has been demonstrated (Dou et al., 2012; Hellerer

et al., 2007; Lyn et al., 2010; Nan et al., 2006; Paar et al.,

2012). Multiplex coherent anti-Stokes Raman scattering micro-

scopy has been used to study phase separation in LDs of 3T3-

L1 cells (Rinia et al., 2008). Raman spectromicroscopy, which
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Figure 1. Aberrant CE Accumulation in Human PCa Tissues

(A–D) Large-area SRL images and benign prostate, low-grade PCa (Gleason grade 3), high-grade PCa (Gleason grade 4), andmetastatic PCa (liver), respectively.

(E–H) Hematoxylin and eosin (H&E) staining of the adjacent slices. Scale bar, 100 mm.

(I–L) High-magnification SRL and two-photon fluorescence images of the lesions shown in (A)–(D) (gray, SRL; green, two-photon fluorescence). Autofluorescent

granules and LDs are indicated by red arrows. Scale bar, 20 mm.

(legend continued on next page)
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combines the high-speed imaging capability of coherent Raman

scattering microscopy and the full spectral analysis capability of

spontaneous Raman spectroscopy, allowed quantitation of not

only the amount but also the composition of individual LDs in

live cells (Slipchenko et al., 2009).

Here, we report quantitative analysis of lipogenesis at the sin-

gle-cell level in intact tissues from a spectrum of human prostate

pathologies. Our label-free Raman spectromicroscopy study re-

vealed an unexpected accumulation of cholesteryl ester (CE) in

high-grade andmetastatic human prostate cancer (PCa) tissues,

but not in normal prostate, benign prostatic hyperplasia (BPH),

prostatitis, or prostatic intraepithelial neoplasia (PIN) tissues.

Our biochemical study further showed that such CE accumula-

tion was induced by loss of tumor suppressor PTEN, upregula-

tion of PI3K/AKT/mTOR pathway, and consequent activation

of sterol regulatory element-binding protein (SREBP) and

low-density lipoprotein receptor (LDLr). Inhibition of cholesterol

esterification significantly suppressed cancer proliferation,

migration, invasion, and tumor growth in vivo. These data collec-

tively herald the potential of using CE as amarker for diagnosis of

aggressive PCa and open a way of treating advanced PCa by

targeting the altered cholesterol metabolism.

RESULTS

Aberrant Accumulation of Esterified Cholesterol in
Advanced Human PCa Revealed by Raman
Spectromicroscopy
We examined a spectrum of human prostate pathologies,

including normal prostate from healthy donors and normal adja-

cent tissues from PCa patients (n = 19), BPH (n = 10), prostatitis

(n = 3), PIN (n = 3), low-grade (Gleason grade 3, n = 12), and high-

grade (Gleason grade 4 or 5, n = 12) PCa from patients who had

not received hormone therapy, and metastases (n = 9) from

patients who had failed hormone therapy. By tuning the laser-

beating frequency to be resonant with C-H stretching vibration,

substantial stimulated Raman loss (SRL) signals arose from the

lipid-rich cell membranes and intracellular LDs, whereas weak

SRL signals were derived from the lipid-poor cell nuclei. Morpho-

logically, the SRL images provided information identical to that

from hematoxylin and eosin-stained slides. In normal prostate

(Figure 1A and see Figure S1A available online), BPH (Fig-

ure S1B), and PIN (Figure S1C), single layers of epithelial

cells facing large lumens were identified by SRL imaging. In

cancerous specimens, the SRL signals revealed small glandular

structures in low-grade PCa (Figure 1B) and cell clusters without

any glandular structures in high-grade PCa (Figure 1C). SRL im-

age of metastasis is shown in Figure 1D. All diagnoses were

confirmed by pathologic assessment of the neighboring slices

stained with hematoxylin and eosin (Figures 1E–1H and S1D–

S1F). By combining SRL with two-photon fluorescence on the

same microscope, we found that the intracellular granules pre-

sent in normal prostate (Figures 1I and S1G), BPH (Figure S1H),
(M) LD area fraction in 19 normal prostate, 10 BPH, 3 prostatitis, 9 low-grade PCa,

by red line. n.s., not significant.

(N) Raman spectra of autofluorescent granules in normal prostate, LDs in PCa, a

band at 1,442 cm�1. Black arrows indicate the bands of cholesterol rings at 702

(O) CE molar percentage in LDs of low-grade PCa (n = 9), high-grade PCa (n = 1

Ce
and PIN (Figure S1I) expressed both SRL and fluorescence sig-

nals, which peaked at 520 nm (Figure S1J). These autofluores-

cent granules were consistently seen in all 19 normal prostates,

10 BPH, and 3 PIN lesions (Table S1), and were determined to be

lipofuscin according to previous reports on pigments in benign

prostate (Ablin et al., 1973). No LDs or autofluorescent granules

were observed in prostatitis specimens (Figures S1K–S1M). In

contrast, with the exception of 4 borderline cases, the 20 primary

PCa and all 9 metastases contained a significant amount of

LDs, but no autofluorescent granules (Figures 1J–1L; Table

S1). By large-area mapping and quantitation, the area fraction

of LDs in human PCa tissues was found to be 0.78% ± 0.65%

for low-grade PCa, 3.93% ± 1.74% for high-grade PCa, and

2.76% ± 1.19% for metastatic PCa (Figure 1M; Table S1). The

high-grade PCa has significantly higher LD area fraction by

�5-fold (p = 8.9E-5) compared to low-grade PCa.

To evaluate the lipid composition, we performed confocal

Raman spectral analysis of individual autofluorescent gran-

ules or LDs accumulated in each lesion type. Figure 1N shows

representative spectra collected from normal prostate, low-

grade PCa (Gleason grade 3), high-grade PCa (Gleason

grade 4), metastatic PCa (liver), and pure cholesteryl oleate.

The autofluorescent granules seen in normal prostate consis-

tently showed bands for lipid (1,200–1,800 cm�1), phenylalanine

(�1,000 cm�1), and prominent CH3 stretching (�2,930 cm�1)

but lacked the characteristic C=O ester stretching band at

1,742 cm�1 (Figure S1N). These data suggest that the autofluor-

escent granules are primarily composed of unesterified lipids

and proteins. Similar Raman profiles were seen in both BPH

and PIN lesion (Figure S1O). Importantly, the spectra of intracel-

lular LDs in low-grade, high-grade, and metastatic PCa (Fig-

ure 1N) were distinctly different from those collected in normal

prostate, BPH, and PIN lesions but nearly identical to the spec-

trum of pure cholesteryl oleate, with characteristic bands for

cholesterol rings at 428, 538, 614, and 702 cm�1 and for ester

bond at 1,742 cm�1 (Movasaghi et al., 2007). Spectra taken

from various LDs in the same cancer specimen were nearly iden-

tical (Figure S1P), which allowed quantitation of CE percentage.

Given that neutral lipids in LDs are predominantly triacylglycerol

(TG) and CE (Farese and Walther, 2009), we recorded Raman

spectra of mixed emulsions containing cholesteryl oleate and

glyceryl trioleate (Figure S1Q). We found that the height ratio be-

tween the most prominent cholesterol band at 702 cm�1 and the

CH2 bending band at 1,442 cm�1 was linearly proportional to the

molar percentage of CE present in the total lipids (Figure S1R).

Based on this calibration curve, we found that LDs were ubiqui-

tously rich in CE in all stages of PCa, specifically 90.2% ± 9.1%

for low grade, 90.6% ± 4.9% for high grade, and 70.3% ± 18.5%

for metastasis (Figure 1O; Table S1). Electrospray ionization

mass spectrometry analysis of extracted lipids from tissues

confirmed that CE accumulated in high-grade PCa, but not in

normal prostate. The mass data further showed that cholesteryl

oleate (CE 18:1) was the dominant species (Figure S1S). To
11 high-grade PCa, and 9metastatic PCa.Mean of LD area fraction is indicated

nd pure cholesteryl oleate. Spectral intensity was normalized by CH2 bending

cm�1.

1), and metastatic PCa (n = 9). Error bars represent SD.
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complete the analysis, we measured TG levels by enzymatic

assay and did not find significant difference between the cancer

tissue (0.77 ± 0.10 mg per gram of tissue) and the normal one

(0.78 ± 0.02mg per gram of tissue). Taken together, our analyses

indicate that CE is the dominant form of neutral lipids accumu-

lated in human PCa tissues, and it presents a promising molec-

ular marker to improve the current PCa diagnosis.

CE Accumulation in PCa Is Not Correlated with
Androgen Signaling
Because androgen receptor (AR) remains transcriptionally active

in castration-resistant PCa (Debes and Tindall, 2004), and

cholesterol is the precursor of the entire androgen synthesis

cascade, we first speculated that CE accumulation was associ-

ated with androgen signaling in PCa. To test this hypothesis, we

examined the LDs in nontransformed human prostate epithelium

and a panel of human PCa cells (Figures 2A and 2B), with various

AR status and androgen dependence (Table S2). As shown in

Figure 2C, the LDs in nontransformed prostate RWPE1 cells

showed a low CE level (<20%), and the CE level remained low

upon addition of 10% fetal bovine serum (Figure S2A). For AR-

negative cancer cells, we examined bone metastasis-derived

PC-3 and brain metastasis-derived DU145 and found that

CE level was high in PC-3 (>90%) but low in DU145 (<20%).

For AR-positive cancer cells, we used low-passage LNCaP

(LNCaP-LP) and high-passage LNCaP (LNCaP-HP) as models

for PCa progression (Igawa et al., 2002). The CE level was high

(>80%) in the androgen-independent LNCaP-HP but low

(<20%) in the androgen-dependent LNCaP-LP. Notably, it was

reported that LD accumulation in LNCaP-LP was due to the up-

regulation of fatty acid synthase (Swinnen et al., 1996, 1997). Our

data showed a dramatic increase of CE levels during progression

of LNCaP cells from androgen-dependent to androgen-indepen-

dent stage.Meanwhile, a key step of androgen signaling, nuclear

translocation of AR, was seen in CE-poor LNCaP-LP cells, but

not in CE-rich LNCaP-HP cells (Figure 2D). Finally, we found, in

AR-positive and androgen-independent C4-2 and 22Rv-1 cells,

that CE level was low (<20%) in C4-2 (Figure 2C) and that LD

accumulation remained low upon dihydrotestosterone treatment

in 22Rv-1 (Figure S2B). These data collectively imply that CE

accumulation may be linked to a pathway that is independent

of androgen signaling.

CE Accumulation Is Driven by Loss of PTEN and
Consequent Upregulation of PI3K/AKT/mTOR/SREBP
Pathway
The finding that CE accumulated in PC-3 cells (PTEN null) but not

in DU145 cells (PTENwild-type) then triggered us to ask whether

CE accumulation resulted from loss of tumor suppressor PTEN,

which is known to activate a pathway bypassing the AR (Debes

and Tindall, 2004). Loss of PTEN has been widely observed in

both localized and metastatic PCa and is correlated with high

Gleason grade (McMenamin et al., 1999). With PTEN loss,

PI3K signaling is hyperactivated, which leads to AKT activation.

The upregulated PI3K/AKT pathway has been implicated in

carcinogenesis and metastasis of PCa (Sarker et al., 2009; Vi-

vanco and Sawyers, 2002). To determine the extent to which

PTEN is involved, we first reintroduced wild-type PTEN into

PC-3 cells (Figure S3A) and found that CE levels were signifi-
396 Cell Metabolism 19, 393–406, March 4, 2014 ª2014 Elsevier Inc.
cantly reduced (Figure 3A). Then we inhibited PTEN by the inhib-

itor BPV in DU145 cells and found a significant increase in CE

levels (Figure 3B). Because BPV is not sufficiently specific to

abrogate PTEN, we stably knocked down PTEN using shRNA

in DU145 cells. As expected, PTEN knockdown resulted in a sig-

nificant reduction of PTEN expression level and a significant

increase in AKT phosphorylation (Figure 3C). We then analyzed

the LDs in the PTEN knockdown DU145 cells (Figure S3B) and

found a significant increase in CE levels (Figure 3D). In consis-

tency, we found higher expression levels of p-AKT in CE-rich

PCa cells (PC-3 and LNCaP-HP) compared to CE-poor PCa cells

(LNCaP-LP, C4-2, and DU145) (Figure S3C). To determine the

role of the PI3K/AKT/mTOR pathway in regulating CE accumula-

tion, we treated both PC-3 and LNCaP-HP cells with LY294002

(a selective PI3K inhibitor), MK2206 (a selective AKT inhibitor),

and rapamycin (a selective mTOR inhibitor), respectively. SRL

imaging (Figure S3D) showed that total LD amounts were not

markedly reduced upon inhibitor treatments (Figure 3E). Spectral

analysis (Figure S3E), however, showed that CE levels were

significantly reduced in PC-3 cells (Figure 3E). The inhibition of

PI3K/AKT/mTOR pathway significantly reduced both LD amount

(Figure S3F) and CE levels (Figure S3G) in LNCaP-HP cells.

Taken together, these results suggest that CE accumulation

is driven by the loss of PTEN and consequent upregulation of

PI3K/AKT pathway.

It is known that AKTmediates the activation of mTOR complex

1 that plays a critical role in regulating the function of SREBPs

(Porstmann et al., 2008). The SREBPs are transcription factors

that function to control lipid and cholesterol homeostasis

by sensing cellular cholesterol (Brown and Goldstein, 1997).

Increased activation of SREBPs was found in advanced PCa

(Ettinger et al., 2004). Using RNA interference, we found that

knockdown of both SREBP-1 and SREBP-2 (Figure S3H) led to

significantly reduced CE levels in PC-3 cells without affecting

LD amount, and knockdown of SREBP-1 resulted in a stronger

effect than knockdown of SREBP-2 (Figure 3E). Using immuno-

blotting, we further found that inhibition of the PI3K/AKT/mTOR

pathway significantly suppressed both the expression level

and cleavage of SREBP-1 in PC-3 cells (Figure 3F), indicating

that CE accumulation is closely related to the activity of

SREBP-1 isoforms. These results collectively show an essential

role of SREBP in regulating CE accumulation.

CE Accumulation in PCa Cells Arises from Enhanced
Uptake of Exogenous LDL
Because cholesterol can be either de novo synthesized via the

mevalonate pathway or taken up from exogenous lipoproteins,

we investigated the source of cholesterol used for CE accumu-

lation. We first treated PC-3 cells with simvastatin, an inhibitor

of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the

rate-limiting enzyme of the mevalonate pathway. As shown in

Figure 4A, simvastatin neither decreased LD amount nor signifi-

cantly reduced CE levels. In contrast, after treating cells with

lipoprotein-deficient serum, LDs nearly disappeared in CE-rich

PC-3 cells (Figure 4B) but remained the same amount in CE-

poor cells, including LNCaP-LP, DU145, and C4-2 (Figures

S4A and S4B). Readdition of LDL into the lipoprotein-deficient

medium restored the LD amount (Figure 4B) with a CE level of

93.6% ± 5.5% in PC-3 cells. By treating cells with DiI-labeled



Figure 2. CE Accumulation Is Not Correlated with Androgen Signaling

(A) SRL images of various types of cells, including RWPE1, LNCaP-LP, LNCaP-HP, PC-3, DU145, and C4-2. LDs are indicated by green arrows.

(B) Raman spectra of LDs in cells shown in (A). Spectral intensity was normalized by the peak at 1,442 cm�1. Black arrows indicate the bands of cholesterol rings

at 702 cm�1.

(C) Quantitation of LD amount and CE percentage. LD amount was normalized by the RWPE1 group. Error bars represent SEM, n > 5. **p < 0.005, ***p < 0.0005.

(D) Nuclear translocation of androgen receptor (AR) in LNCaP-LP and LNCaP-HP cells. Blue, DAPI; red, AR immunofluorescence. Scale bar, 10 mm.
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LDL, it was found that LDL uptake was the most prominent in the

CE-rich PC-3 cells compared to CE-poor PCa cells (Figures S4C

and S4D). Inhibition of the PI3K/AKT/mTOR pathway signifi-

cantly reduced expression levels of LDLr (Figure 4C) and

blocked the uptake of DiI-labeled LDL in PC-3 cells (Figure 4D).

Knockdown of SREBP using siRNA also reduced the LDL uptake

in PC-3 cells (Figure 4E). These results collectively support the

notion that CE accumulation in PCa cells is a consequence of

enhanced uptake of LDL.
Ce
CE Accumulation in PCa Cells Requires Cholesterol
Esterification by ACAT-1
LDL is known to enter a cell via LDLr and traffic to the late endo-

some and lysosome to be hydrolyzed to free fatty acids and

free cholesterol. The excess free cholesterol, together with the

fatty acyl CoA substrate, is then converted to CE by acyl coen-

zyme A: cholesterol acyltransferase (ACAT) and stored in LDs

(Chang et al., 2006). Thus, we treated cells separately with avasi-

mibe and Sandoz 58-035, two different ACAT inhibitors. Both
ll Metabolism 19, 393–406, March 4, 2014 ª2014 Elsevier Inc. 397



Figure 3. CE Accumulation Is Induced by PTEN Loss and PI3K/AKT Activation

(A) Raman spectra of LDs in PTEN null and PTEN-overexpressed PC-3 cells (3 day transfection) are shown. The band of cholesterol rings at 702 cm�1 nearly

disappeared after the treatment, as indicated by the arrows. Quantitation of CE percentage and LD amount is shown below the spectra. n > 5.

(B) CE levels in DU145 cell treated with PTEN inhibitor BPV (10 mM) for 3 days. Raman spectra of LDs in control and treated cells are shown. The band of

cholesterol rings at 702 cm�1 significantly increased after the treatment, as indicated by the arrows. Quantitation of CE percentage and LD amount is shown

below the spectra. n > 5. Spectral intensity was normalized by the peak at 1,442 cm�1 in (A) and (B).

(C) Immunoblot of antibodies against PTEN, p-AKT, and b-actin in PTEN-WT and PTEN-KD DU145 cells.

(D) CE percentage and LD amount in PTEN-WT and PTEN-KD DU145 cells.

(E) CE percentage and LD amount in cells treated with DMSO as control, LY294002 (50 mM, 3 day), MK2206 (10 mM, 2 day), rapamycin (100 nM, 2 day), and

SREBP-1 and SREBP-2 siRNA (2 day transfection). n > 5. LD amount was normalized by the control group in (A), (B), (D), and (E).

(F) Immunoblot of antibodies against p-AKT, p-S6, SREBP-1 and SREBP-2, and b-actin in PC-3 cells treated with DMSO as control (Ctl), LY294002 (LY), MY2206

(MK), and rapamycin (Rapa). P, precursor form; C, cleaved form. The expression levels of p-AKT and p-S6 were reduced after inhibitor treatments as expected.

WT, wild-type; KD, knockdown. Error bars represent SEM. ***p < 0.0005.
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avasimibe (Figure 4F) and Sandoz 58-035 (Figure S4E) effec-

tively suppressed CE accumulation in PC-3 cells, with the

amount of LDs slightly decreased (Figure 4F). The significant

reduction of CE accumulation upon avasimibe treatment was

verified by biochemical assay (Figure S4F) and mass spectrom-

etry of extracted lipids from PC-3 cells (Figure S4G). The mass
398 Cell Metabolism 19, 393–406, March 4, 2014 ª2014 Elsevier Inc.
data (Figure 4G) further showed that cholesteryl oleate (CE

18:1) was the dominant species present. Because ACAT inhibi-

tors inhibits both ACAT-1 and ACAT-2 isoforms, we knocked

down ACAT-1 using shRNA (Figure S4H) and found significant

reduction of the CE level in PC-3 cells (Figure 4F). In addition,

inhibition of PI3K/AKT/mTOR pathway significantly reduced



Figure 4. CE Accumulation Arises from Enhanced Uptake of LDL and Involves Cholesterol Esterification by ACAT-1

(A) LD amount and CE percentage in PC-3 cells treated with or without simvastatin (10 mM, 1 day), n > 5.

(B) SRL images and quantitation of LD amount in PC-3 cells treated with lipoprotein-deficient serum (LPDS, 10%, 1 day) and subsequent LDL readdition

(45 mg/ml, 1 day), n = 6. LDs are indicated by the green arrow.

(C) Immunoblot of antibodies against LDLr, ACAT-1, and b-actin in PC-3 cells treated with DMSO as control (Ctl), LY294002 (LY, 50 mM, 3 day), MK2206

(MK, 10 mM, 2 day), and rapamycin (Rapa, 100 nM, 2 day).

(D and E) Quantitation of DiI-LDL uptake by PC-3 cells treated with DMSO as control, LY294002, and rapamycin (n = 5) (D), and transfected with SREBP-1 or

SREBP-2 siRNA (n = 5) (E). DiI-LDL intensity was normalized by the control group.

(F) Raman spectra of LDs and quantitation of LD amount and CE percentage in PC-3 cells treated with avasimibe (7.5 mM, 1 day) and ACAT-1 shRNA (3 day

transfection). n > 5. Spectral intensity was normalized by the peak at 1,442 cm�1. The bands of cholesterol rings at 702 cm�1 nearly disappeared after the

treatments, as indicated by the arrows. LD amount was normalized by the control group in (A), (B), and (F).

(G) Mass spectra of lipids extracted from control and avasimibe-treated PC-3 cells (7.5 mM, 2 day). The m/z 668 peak stands for cholesteryl oleate (CE 18:1).

DiI-LDL, DiI-labeled LDL. Error bars represent SEM. **p < 0.005, ***p < 0.0005. Scale bar, 10 mm.
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Figure 5. CE Depletion Impairs PCa Aggressiveness

(A) IC50 curve of avasimibe treatments (3 day) on PC-3 cells (IC50 = 7.3 mM). n = 6. The control group (DMSO) was used for normalization.

(B) Flow cytometry analysis of cell cycle in control and avasimibe-treated (7.5 mM, 3 day) PC-3 cells (n = 3). PI, propidium iodide.

(C) Quantitation of migrated and invaded PC-3 cells that were pretreated with avasimibe (5 mM), Sandoz 58-035 (10 mM), or ACAT-1 shRNA for 2 days (n = 3).

The control group was used for normalization.

(D) Quantitation of migrated and invaded PTEN-WT or PTEN-KD DU145 cells that were pretreated with DMSO as control or avasimibe (5 mM) for 1 day (n = 3).

The PTEN-WT DU145 group was used for normalization.

(E) Relative tumor volume of PC-3 xenograft (n = 9) upon daily avasimibe treatments (15 mg/kg). Representative tumors harvested on day 30 are shown in the

inset. Scale bar, 1 cm.

(legend continued on next page)
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expression levels of ACAT-1 (Figure 4C). These results collec-

tively confirm the involvement of ACAT-1 in CE storage in PCa

cells.

Depletion of CE Storage Impairs PCa Aggressiveness
Because CE accumulation was found in PCa but was not detect-

able in normal prostate, we evaluated how cell viability could be

affected by regulating CE levels. Separate treatments by avasi-

mibe (Figure 5A) and Sandoz 58-035 (Figure S5A) significantly

reduced viability of PC-3 cells, with IC50 value of 7.3 mM and

17.2 mM, respectively. Avasimibe treatment also significantly

reduced viability of LNCaP-HP cells, with IC50 value of 9.6 mM

(Figure S5B). The inhibitory effect of avasimibe on the growth

of nontransformed RWPE1 cells and CE-poor PCa cells,

including LNCaP-LP, DU145, and C4-2, was considerably

smaller than that in PC-3 and LNCaP-HP cells (Figure S5C). To

confirm the inhibitory effect was ACAT-1 specific, we knocked

down ACAT-1 using shRNA, and observed significantly reduced

viability in PC-3 cells (Figure S5D). Results from flow cytometry

analysis (Figure 5B) revealed that exposure of PC-3 cells to ava-

simibe resulted in both cell-cycle arrest and apoptosis; i.e., the

G2/M phase population was approximately two times smaller,

whereas the sub-G1 population was approximately three times

larger in avasimibe-treated group compared to control group.

Because the lipids in LDs are primarily composed of CE and

TG, we treated PC-3 cells with a selective inhibitor of diacylgly-

cerol acyltransferase (DGAT)-1, which catalyzes the terminal

step of TG formation. Our data showed that DGAT inhibition by

A922500 did not affect cell viability until high doses (Figure S5A).

To evaluate whether CE depletion affects tumor aggressive-

ness, we conducted standard transwell assays (Figure S5E).

Our results showed that both migration and invasion capabilities

of PC-3 cell were markedly suppressed upon ACAT inhibition

by avasimibe or Sandoz 58-035, and ACAT-1 knockdown

using shRNA (Figure 5C). In contrast, DGAT inhibition slightly

increased PC-3 cell migration (Figure S5F) and invasion (Fig-

ure S5G). As a positive control, PTEN knockdown in DU145 cells

led to significantly greater capabilities of growth (Figure S5H),

migration, and invasion (Figure 5D) compared to the CE-poor

PTEN wild-type DU145 cell. This result is consistent with the

previous study (Dubrovska et al., 2009), where PTEN knockdown

led to increased clonogenic and tumorigenic potential of DU145

cell. Importantly, ACAT inhibition by avasimibe significantly sup-

pressed viability (Figure S5H), migration, and invasion capabil-

ities (Figure 5D) of PTEN knockdown DU145 cells. These results

collectively show that CE depletion suppresses aggressiveness

of CE-rich PCa cells in vitro.

To test the potential of treating advanced PCa in vivo by ACAT

inhibition, we separately administered avasimibe and Sandoz

58-035 (15 mg/kg) to athymic nude mice bearing PC-3 xeno-

grafts. Daily treatment of mice with avasimibe inhibited the

growth of PC-3 tumors by �2-fold (Figure 5E) and significantly
(F) Weight of tumor tissues harvested from vehicle and avasimibe-treated mice i

(G) Relative tumor volume of PTEN-KD DU145 xenograft (n = 8). Representative

(H) Weight of tumor tissues harvested from vehicle and avasimibe-treated mice

(I and J) Body weight of the mice bearing PC-3 tumors (n = 9) (I) and PTEN-KD D

(K and L) (K) CE percentage and (L) percentage of Ki67- and TUNEL-positive cells i

Ctl, control; Veh, vehicle; Ava, avasimibe; WT, wild-type; KD, knockdown. Error

Ce
reduced weight of tumor tissues (Figure 5F). Similar results

were observed from the mice treated with Sandoz 58-035

(Figures S5I and S5J). In contrast, daily treatments of mice

with DGAT inhibitor A922500 (3 mg/kg) did not reduce PC-3

growth in vivo (Figures S5I and S5J). To confirm the efficacy

of ACAT inhibition in tumors with inactivated PTEN, we trans-

planted the stable PTEN knockdown DU145 cells into mice.

The results showed that ACAT inhibition by avasimibe sup-

pressed the growth of PTEN knockdown DU145 tumors by

�4-fold (Figure 5G) and reduced weight of tumor tissues by

�3-fold (Figure 5H). Importantly, the ACAT inhibitors did not

cause general toxicity to animals, as indicated by the fact that

no changes in body weight were observed in the mice treated

with avasimibe (Figures 5I and 5J) or Sandoz 58-035 (Fig-

ure S5K). Pathological review of sections of heart, kidney, liver,

lung, and spleen harvested from mice receiving avasimibe

showed no detectable signs of toxicity (Figure S5L). Spectro-

scopic analysis of extracted tissues revealed that CE levels

significantly dropped in avasimibe-treated tumors compared to

vehicle-treated ones (Figure 5K), even though LD area fraction

was not affected (Figure S5M), indicating that ACAT inhibitor

worked to inhibit CE formation in tumor cells in vivo. Immunohis-

tochemistry using markers for proliferation (Ki67) and apoptosis

(TUNEL) (Figure S5L) showed that avasimibe significantly

reduced tumor proliferation by �70% and increased apoptosis

by �2-fold (Figure 5L).

CE Depletion Impairs PCa Growth by Limiting Uptake of
Essential Fatty Acids
We first suspected that CE storage might act as a pool of fatty

acid and cholesterol which can be released from LDs for cancer

cell proliferation. The result that inhibition of CE hydrolysis using

diethylumbelliferyl phosphate, a selective cholesterol esterase

inhibitor, slightly enhanced PC-3 cell growth (Figure S6A) did

not support such hypothesis. We then asked whether CE deple-

tion suppressed PCa proliferation by downregulation of the

upstream pathways including LDL uptake. We notice that LDL

is the primary carrier of essential polyunsaturated fatty acids,

including arachidonic acid (AA) (Habenicht et al., 1990). Inside

cells, AA is released from LDL and converted to a range of eicos-

anoids that have been implicated in various pathological pro-

cesses, including inflammation and cancer (Wang and Dubois,

2010). Because cholesterol esterification is known to play a

vital role in maintaining intracellular cholesterol homeostasis

(Chang et al., 2006), we hypothesized that abrogating ACAT

activity can inhibit PCa growth by elevating free cholesterol

levels, downregulating expression levels of SREBP and LDLr,

and consequently reducing the uptake of LDL. To test this

hypothesis, we measured free cholesterol levels in PC-3 cells

with a biochemical assay and found that avasimibe treatment

significantly increased the free cholesterol levels (Figure 6A).

Moreover, knockdown of ACAT-1 (Figure 6B) or inhibition of
n (E).

tumors harvested on day 21 are shown in the inset. Scale bar, 1 cm.

in (G).

U145 tumors (n = 8) (J).

n tumor tissues harvested from vehicle and avasimibe-treatedmice in (E) (n = 5).

bars represent SEM. *p < 0.05, **p < 0.005, ***p < 0.0005.
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Figure 6. CE Depletion Reduces PCa Cell Proliferation by Limiting the Uptake of Essential Fatty Acids

(A) Free cholesterol level in control and avasimibe-treated PC-3 cells (n = 3).

(B and C) Immunoblot of antibodies against SREBP-1 and SREBP-2, LDLr, p-AKT, and b-actin in PC-3 cells treated with ACAT-1 shRNA (B) or avasimibe (C). P,

precursor form; C, cleaved form.

(D) Quantitation and representative images and of DiI-LDL uptake in control and avasimibe-treated PC-3 cells (n = 5). Gray, SRL; green, two-photon fluorescence.

Scale bar, 10 mm. DiI-LDL intensity was normalized by the control group.

(E) AA levels in PC-3 cells treated with avasimibe or ACAT-1 shRNA (n = 3). In (A)–(E), avasimibe treatment was as follows: 7.5 mM, 2 day; ACAT-1 shRNA, 3 day

transfection.

(F) Dose-dependent growth of PC-3 cells upon AA treatments (3 day).

(G) PC-3 cell viability upon avasimibe treatment (7.5 mM) in the absence or presence of AA (7.5 mM) for 3 days. The control groups were used for normalization. AA,

arachidonic acid; Ava, avasimibe. Error bars represent SEM. *p < 0.05, **p < 0.005, ***p < 0.0005.
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ACAT using avasimibe (Figure 6C) or Sandoz 58-035 (Figure S6B)

resulted in reduced expression levels of SREBP-1 and LDLr and

also reduced SREBP-1 cleavage. Quantification of the western

blots further confirmed that expression levels of both precursor

and cleaved forms of SREBP-1 were significantly reduced

upon ACAT-1 knockdown or inhibition (Figure S6C). The LDLr

expression level in implanted PC-3 tumor was also reduced in

avasimibe-treated group compared to the vehicle group (Fig-

ure S6D). By monitoring cellular uptake of DiI-LDL, we found
402 Cell Metabolism 19, 393–406, March 4, 2014 ª2014 Elsevier Inc.
that avasimibe treatment resulted in reduced LDL uptake by

�10-fold (Figure 6D). Furthermore, liquid chromatography-tan-

dem mass spectrometry analysis of PC-3 cell lysates revealed

that avasimibe treatment or ACAT-1 knockdown significantly

reduced the level of AA in PC-3 cells (Figure 6E) and LNCaP-

HP cells (Figure S6E). As shown elsewhere (Ghosh and Myers,

1997; Hughes-Fulford et al., 2001) and confirmed herein, AA

(Figure 6F) and LDL (Figure S6F) separately promoted the growth

of PC-3 cells in a dose-dependent manner. AA was also shown



Figure 7. Molecular Pathways Underlying Accumulation of CE in

Advanced Human PCa and Suppression of Cancer Proliferation

upon CE Depletion

The schematic shows that loss of PTEN activates PI3K/AKT/mTOR pathway,

which in turn upregulates SREBP and LDLr. LDL is then hydrolyzed to free fatty

acids and free cholesterol (FC) in lysosome. The excess FC together with the

fatty acyl CoA substrate is converted to CE by ACAT-1 and stored in LDs. LDL

also serves as an important carrier of u-6 polyunsaturated fatty acid (PUFA),

such as AA, which promotes cell proliferation and tumor growth. The red

arrows depict the consequences of CE depletion. Depletion of CE storage by

ACAT-1 knockdown or ACAT inhibition disturbs cholesterol homeostasis

by elevating FC levels and consequently downregulating expression levels of

SREBP and LDLr. Subsequently reduced uptake of u-6 PUFA from LDL

suppresses cancer proliferation.
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to rescue the inhibitory effect of avasimibe on PC-3 cell viability

(Figure 6G). Moreover, expression levels of p-AKT were signifi-

cantly reduced in PC-3 cells upon ACAT-1 knockdown (Fig-

ure 6B) or avasimibe treatment (Figure 6C). This reduction is

consistent with the role of AA as an activator of PI3K/AKT

signaling in PCa (Hughes-Fulford et al., 2006). These data collec-

tively provide evidence that ACAT inhibition might hinder pro-

liferation of CE-rich PCa cells by limiting the uptake of a critical

proliferative factor, AA, via downregulation of LDLr.

DISCUSSION

Through integrated analyses of PCa clinical samples, cell lines,

and mouse xenograft model, we have revealed an essential

role of CE, a lipid metabolite, in human PCa progression. CE

accumulation is known to be a hallmark of atherosclerosis and

hormone-producing organ (Farese and Walther, 2009; Murphy,

2001); however, its exact role in cancer progression remains

elusive. In this study, prominent CE accumulation that only

occurs in advanced PCa is shown to be a consequence of the

loss of tumor suppressor PTEN and subsequent activation of
Ce
PI3K/AKT/mTOR pathway. Blockage of CE accumulation signif-

icantly impairs PCa aggressiveness without inducing toxicity to

normal cells. As discussed below, these findings improve current

understanding of the role of cholesterol in cancer and also open

opportunities for treatment of aggressive PCa.

First, our study extends the current understanding of meta-

bolic pathways that drive PCa progression. Increasing evi-

dence supports that androgen signaling pathways remain active

throughout every stage of PCa progression (Debes and Tindall,

2004). However, expression levels of AR are heterogeneous

and even absent in some metastases (Shah et al., 2004). Such

clinical observations suggest that PCa cells may also depend

on other compensatory signaling pathways to survive and

grow. One of the most important pathways that bypasses AR

is the PI3K/AKT/mTOR pathway, which is negatively regulated

by the tumor suppressor PTEN. PTEN has been identified as

one of the most commonly lost or mutated tumor suppressor

genes in human cancers (Chalhoub and Baker, 2009). In

particular, nearly 70% of advanced PCa exhibits loss of PTEN

or consequent activation of the PI3K/AKT pathway (Mulholland

et al., 2011), which leads to enhanced cell survival, metastasis,

and castration-resistant growth (Liu et al., 2011; Mulholland

et al., 2011; Vivanco and Sawyers, 2002). Our results, as illus-

trated in Figure 7, show that PTEN loss induces CE accumulation

by upregulating the PI3K/AKT/mTOR pathway and subsequently

activating SREBP and LDLr. This finding elucidates the mecha-

nism by which PTEN regulates metabolic pathways to meet

the increased demand of aggressive PCa cell for LDL cholesterol

uptake. Our study further shows that such enhanced LDL uptake

is linked to AA. Increasing evidence has shown that one key risk

factor of PCa is dietary fat (Kolonel et al., 1999), particularly

the high u6/u3 fatty acid ratio (Kobayashi et al., 2006). These

findings are consistent with our data about AA-enhanced PCa

growth.

Whereas alterations to metabolism of glucose, amino acids,

and fatty acids have been extensively studied (Schulze and Har-

ris, 2012), cholesterol metabolism in cancer is a relatively under-

studied field (Santos and Schulze, 2012). Inside cells, cholesterol

is an essential molecule that plays important roles in the mainte-

nance of membrane structure, signal transduction, and provision

of precursor to hormone synthesis (Ikonen, 2008). As early

as 1942, increased level of free cholesterol in the adenoma of

enlarged prostates was reported by analysis of tissue homoge-

nates (Swyer, 1942). More recently, immunohistochemical stain-

ing of PCa bone metastases showed intense staining of the LDLr

(Thysell et al., 2010), which supports the important role of LDL

uptake in PCa progression. However, the molecular mecha-

nisms by which advanced PCa cells obtain sufficient cholesterol

and meanwhile maintain intracellular cholesterol homeostasis

remain poorly understood. Our imaging study of human tissues

identified a possible culprit—that is, accumulation of esterified

cholesterol in LDs of advanced PCa cells. Advanced PCa cells

take advantage of the esterified form not only to avoid toxicity

of excess cholesterol (Chang et al., 2006), but also to keep free

cholesterol at relatively low level so that SREBP, which controls

cholesterol biogenesis, is always active. This mechanism ex-

plains why PCa cells could maintain high expression levels of

LDLr even in the presence of exogenous cholesterol (Chen and

Hughes-Fulford, 2001). Although it is known that LDLr gene
ll Metabolism 19, 393–406, March 4, 2014 ª2014 Elsevier Inc. 403
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transcription is under the control of SREBP-2 in the liver, it has

also been reported that LDLr is responsive to SREBP-1 (Horton

et al., 2003; Sekar and Veldhuis, 2004; Yokoyama et al., 1993),

specifically SREBP-1a, in certain contexts including glioblas-

toma (Guo et al., 2011). Our result that ACAT inhibition leads to

reduced levels of SREBP-1 and LDLr, together with the finding

that SREBP-1 knockdown leads to reduced LDL uptake, sug-

gests that SREBP-1 plays an important role in LDLr regulation

in human prostate cancer PC-3 cells.

We note that statin use has been linked to a decreased risk

of advanced PCa (Platz et al., 2006), and its benefits were found

to be based on systemic cholesterol-lowering effect rather than

direct effect on de novo cholesterol synthesis (Murtola et al.,

2011). In accordance, our cellular studies reveal that cholesterol

stored in the LDs of advanced PCa cells is not synthesized de

novo, but rather derived from enhanced uptake of exogenous

LDL. Using mass spectrometry, we find that cholesteryl oleate

is the dominant species of CE inside the LDs. This result sug-

gests that LDL with cholesteryl linoleate as the dominant form

is hydrolyzed into free cholesterol and then re-esterified to

CE by ACAT-1. Together, our finding offers a biological founda-

tion that supports the beneficial effect of cholesterol-lowering

drugs.

Second, our study heralds the potential of using CE as a ther-

apeutic target for advanced PCa. While often diagnosed in clin-

ically localized stages, PCa remains the second leading cause of

cancer-related mortality in American men (Siegel et al., 2012).

For men with advanced PCa, androgen deprivation therapy is

an accepted standard therapy. Despite initial disease control,

androgen deprivation therapy alone is noncurative, and the sub-

sequent development of castration-resistant PCa occurs in the

lifespan of almost all men who do not succumb to noncancer

deaths (Debes and Tindall, 2004). There has been a tremendous

increase in treatment options available for metastatic castration-

resistant PCa patients, including novel antiandrogen therapy (de

Bono et al., 2011) and others. Nevertheless, the effectiveness of

current therapies is palliative, with an improvement in overall sur-

vival of 2–5months compared to placebo. In this study, we show

that CE depletion by abrogating ACAT activity significantly hin-

ders advanced PCa growth. One possible explanation for such

anticancer effect, as illustrated in Figure 7, is that depleting

CE storage disrupts intracellular cholesterol homeostasis and

consequently reduces the uptake of essential fatty acids, such

as AA, a proliferation factor of PCa (Ghosh and Myers, 1997;

Hughes-Fulford et al., 2001). Because CE depletion leads to

elevation of free cholesterol levels, apoptosis induced by ACAT

inhibition could be due to free cholesterol toxicity. The alteration

of cholesterol metabolism might also be linked to regulation

of lipid rafts in PCa (Hager et al., 2006). Importantly, the CE-

depleting drug does not cause detectable toxicity to normal

cells. Thus, cholesterol esterification may be a cancer-specific

target for developing an effective, nontoxic, anticancer therapy.

Blockage of cholesterol esterification was used to treat cells of

lymphocytic leukemia (Mulas et al., 2011), glioblastoma (Bemlih

et al., 2010), and breast cancer (Antalis et al., 2009) in vitro. In this

work, we demonstrate its effectiveness in suppressing growth of

aggressive tumor in vivo. We note that avasimibe was previously

used to treat atherosclerosis (Llaverı́as et al., 2003) but failed due

to the lack of effectiveness in reducing plaque size. Together,
404 Cell Metabolism 19, 393–406, March 4, 2014 ª2014 Elsevier Inc.
this study offers a potentially effective way of treating advanced

PCa by abrogating ACAT-1 activity.

Finally, given that the PI3K pathway is hyperactivated not

only in advanced PCa but also in many other human cancers,

including brain, breast, renal, lymphocyte, cervical, and lung

(Luo et al., 2003), CE accumulation might be a common charac-

teristic of PI3K-driven cancers. Indeed, CE was found to be a

proliferative factor for leukemia (Mulas et al., 2011), and dysregu-

lation of cholesterol metabolism was reported in glioblastoma

(Guo et al., 2011). Future elucidation of the molecular mecha-

nisms by which the PI3K pathway differentially regulates choles-

terol metabolism in cancer cells from multiple tissues of origin

will determine whether cholesterol esterification is a compel-

ling drug target across multiple cancer types. Such studies will

further improve the current understanding of how metabolic

reprogramming is linked to oncogenic transformation.

EXPERIMENTAL PROCEDURES

Human Prostate Tissue Specimens, Cell Culture, and Chemicals

This study was approved by an institutional review board. Frozen specimens

of human prostate tissues were obtained from Indiana University Simon Can-

cer Center Solid Tissue Bank and Johns Hopkins Hospital. Cell lines were

obtained from the American Type Culture Collection. Details are described

in Supplemental Experimental Procedures.

Label-free Raman Spectromicroscopy

Label-free Raman spectromicroscopy was performed on unfixed and un-

stained tissue slices (�20 mm) and live cells without any processing or labeling.

SRL imaging was performed on a femtosecond SRL microscope, with the

laser-beating frequency tuned to the C-H stretching vibration band at

2,845 cm�1, as described previously (Zhang et al., 2011). Compositional anal-

ysis of individual LDs and autofluorescent granules was performed by integra-

tion of high speed coherent anti-Stokes Raman scattering imaging and

confocal Raman spectral analysis on a single platform (Slipchenko et al.,

2009). More details are described in Supplemental Experimental Procedures.

We profiled lipogenesis in two aspects, LD amount and CE percentage in

individual LDs. By using ImageJ ‘‘Threshold’’ function, LDs in the cells can be

selected due to their significantly higher signal intensities compared to other

cellular compartments. Then, by using ImageJ ‘‘Analyze Particles’’ function,

area fraction of LDs out of total image area can be quantified. For tissue spec-

imen, the area fractions of LDs from the two different locations were averaged

to obtain the final value of LD area fraction. For cultured cells, the area fraction

of LDs was further normalized by cell number to obtain LD amount, and �50

cells were analyzed. The percentage of CE in individual LDs was linearly corre-

lated with the height ratio of the 702 cm�1 peak to the 1,442 cm�1 peak (I702/

I1442). Specifically, I702/I1442 = 0.00255 3 CE percentage (%) (Figure S1R). CE

percentage for each specimen or cell culture was obtained by averaging the

CEpercentage of LDs in 5–10 cells, given that Ramanprofiles of LDs in different

cells in the same specimen or cell culture were nearly the same (Figure S1P).

Cell Aggressiveness Assays, Cell-Cycle Analysis, and Tumor

Xenograft Studies

Cell migration, invasion, viability, cell-cycle, and tumor xenograft studies of

cancer cells were performed as described in the Supplemental Experimental

Procedures. Invasion and migration assays were performed in Transwell

chambers (Corning) coatedwith andwithoutMatrigel (BDBioscience), respec-

tively. Cell-viability assays were performed using Thiazolyl Blue Tetrazolium

Blue (MTT) colorimetric assay (Sigma). Human cancer xenografts were estab-

lished by transplanting PC-3 or PTEN knockdownDU145 cells subcutaneously

into the flank of athymic nude mice. Intraperitoneal drug injections started

�2 weeks after implantation (day 0). Relative tumor volume = tumor volume /

initial tumor volume (day 0) for each mouse. Details are described in Supple-

mental Experimental Procedures. The protocol for the animal study was

approved by the Purdue Animal Care and Use Committee.
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Lipid Extraction and Measurements

Lipids in cells and tissues were extracted and measured as described previ-

ously (Folch et al., 1957; Liebisch et al., 2006; Yang et al., 2007). Details are

described in Supplemental Experimental Procedures.

Immunoblotting, Immunohistochemistry, and RNA Interference

Immunoblotting, immunohistochemistry, and RNA interference were per-

formed as described in the Supplemental Experimental Procedures.

Statistical Analysis

One-way ANOVA and Student’s t test were used for comparisons between

groups, and p < 0.05 was considered statistically significant. Details are

described in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, two tables, and Supplemental

Experimental Procedures and can be found with this article at http://dx.doi.

org/10.1016/j.cmet.2014.01.019.
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Tammela, T.L.J. (2011). Comparative effects of high and low-dose simvastatin

on prostate epithelial cells: the role of LDL. Eur. J. Pharmacol. 673, 96–100.

Nan, X., Potma, E.O., and Xie, X.S. (2006). Nonperturbative chemical imaging

of organelle transport in living cells with coherent anti-Stokes Raman scat-

tering microscopy. Biophys. J. 91, 728–735.

Nomura, D.K., Long, J.Z., Niessen, S., Hoover, H.S., Ng, S.-W., and Cravatt,

B.F. (2010). Monoacylglycerol lipase regulates a fatty acid network that

promotes cancer pathogenesis. Cell 140, 49–61.
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