Nature Medicine的报道“Prediction of recurrence risk in endometrial cancer with multimodal deep learning”,介绍了一种名为HECTOR(基于组织病理学的子宫内膜癌量身定制的预后风险模型)的多模态深度学习模型,旨在通过使用苏木精-伊红染色(Hematoxylin and Eosin, H&E)全片图像和肿瘤分期数据,预测子宫内膜癌患者的复发风险。HECTOR模型在包括PORTEC-1/-2/-3随机试验在内的八个子宫内膜癌队列(共2072名患者)中进行了开发和验证。HECTOR在内部测试集(n=353)和两个外部测试集(n=160和n=151)中分别表现出0.789、0.828和0.815的C指数(C-index),显著优于当前的标准方法。Kaplan-Meier分析显示,HECTOR模型能够将患者分为不同的风险组,低、中、高风险组的10年远处无复发率分别为97.0%、77.7%和58.1%。原文链接 Volinsky-Fremond S, Horeweg N, Andani S, Barkey Wolf J, Lafarge MW, de Kroon CD, Ørtoft G, Høgdall E, Dijkstra J, Jobsen JJ, Lutgens LCHW, Powell ME, Mileshkin LR, Mackay H, Leary A, Katsaros D, Nijman HW, de Boer SM, Nout RA, de Bruyn M, Church D, Smit VTHBM, Creutzberg CL, Koelzer VH, Bosse T. Prediction of recurrence risk in endometrial cancer with multimodal deep learning. Nat Med. 2024 May 24. doi: 10.1038/s41591-024-02993-w. Epub ahead of print. PMID: 38789645. https://www.nature.com/articles/s41591-024-02993-w